Summary
Computational photography refers to digital image capture and processing techniques that use digital computation instead of optical processes. Computational photography can improve the capabilities of a camera, or introduce features that were not possible at all with film based photography, or reduce the cost or size of camera elements. Examples of computational photography include in-camera computation of digital panoramas, high-dynamic-range images, and light field cameras. Light field cameras use novel optical elements to capture three dimensional scene information which can then be used to produce 3D images, enhanced depth-of-field, and selective de-focusing (or "post focus"). Enhanced depth-of-field reduces the need for mechanical focusing systems. All of these features use computational imaging techniques. The definition of computational photography has evolved to cover a number of subject areas in computer graphics, computer vision, and applied optics. These areas are given below, organized according to a taxonomy proposed by Shree K. Nayar. Within each area is a list of techniques, and for each technique one or two representative papers or books are cited. Deliberately omitted from the taxonomy are (see also ) techniques applied to traditionally captured images in order to produce better images. Examples of such techniques are dynamic range compression (i.e. tone mapping), color management, image completion (a.k.a. inpainting or hole filling), digital watermarking, and artistic image effects. Also omitted are techniques that produce range data, volume data, 3D models, 4D light fields, 4D, 6D, or 8D BRDFs, or other high-dimensional image-based representations. Epsilon photography is a sub-field of computational photography. Photos taken using computational photography can allow amateurs to produce photographs rivalling the quality of professional photographers, but currently (2019) do not outperform the use of professional-level equipment. This is controlling photographic illumination in a structured fashion, then processing the captured images, to create new images.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (2)
Multi-exposure HDR capture
In photography and videography, multi-exposure HDR capture is a technique that creates extended or high dynamic range (HDR) images by taking and combining multiple exposures of the same subject matter at different exposure levels. Combining multiple images in this way results in an image with a greater dynamic range than what would be possible by taking one single image. The technique can also be used to capture video by taking and combining multiple exposures for each frame of the video.
Computer vision
Computer vision tasks include methods for , , and understanding digital images, and extraction of high-dimensional data from the real world in order to produce numerical or symbolic information, e.g. in the forms of decisions. Understanding in this context means the transformation of visual images (the input to the retina in the human analog) into descriptions of the world that make sense to thought processes and can elicit appropriate action.