In abstract algebra, the superreal numbers are a class of extensions of the real numbers, introduced by H. Garth Dales and W. Hugh Woodin as a generalization of the hyperreal numbers and primarily of interest in non-standard analysis, model theory, and the study of Banach algebras. The field of superreals is itself a subfield of the surreal numbers.
Dales and Woodin's superreals are distinct from the super-real numbers of David O. Tall, which are lexicographically ordered fractions of formal power series over the reals.
Suppose X is a Tychonoff space and C(X) is the algebra of continuous real-valued functions on X. Suppose P is a prime ideal in C(X). Then the factor algebra A = C(X)/P is by definition an integral domain that is a real algebra and that can be seen to be totally ordered. The field of fractions F of A is a superreal field if F strictly contains the real numbers , so that F is not order isomorphic to .
If the prime ideal P is a maximal ideal, then F is a field of hyperreal numbers (Robinson's hyperreals being a very special case).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a real closed field is a field F that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers. A real closed field is a field F in which any of the following equivalent conditions is true: F is elementarily equivalent to the real numbers. In other words, it has the same first-order properties as the reals: any sentence in the first-order language of fields is true in F if and only if it is true in the reals.
In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.
In mathematics, the surreal number system is a totally ordered proper class containing not only the real numbers but also infinite and infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number. Research on the Go endgame by John Horton Conway led to the original definition and construction of surreal numbers. Conway's construction was introduced in Donald Knuth's 1974 book Surreal Numbers: How Two Ex-Students Turned On to Pure Mathematics and Found Total Happiness.
The aim of this paper is to give new upper bounds for Euclidean minima of algebraic number fields. In particular, to show that Minkowski's conjecture holds for the maximal totally real subfields of cyclotomic fields of prime power conductor. ...