In mathematics, a real closed field is a field F that has the same first-order properties as the field of real numbers. Some examples are the field of real numbers, the field of real algebraic numbers, and the field of hyperreal numbers. A real closed field is a field F in which any of the following equivalent conditions is true: F is elementarily equivalent to the real numbers. In other words, it has the same first-order properties as the reals: any sentence in the first-order language of fields is true in F if and only if it is true in the reals. There is a total order on F making it an ordered field such that, in this ordering, every positive element of F has a square root in F and any polynomial of odd degree with coefficients in F has at least one root in F. F is a formally real field such that every polynomial of odd degree with coefficients in F has at least one root in F, and for every element a of F there is b in F such that a = b2 or a = −b2. F is not algebraically closed, but its algebraic closure is a finite extension. F is not algebraically closed but the field extension is algebraically closed. There is an ordering on F that does not extend to an ordering on any proper algebraic extension of F. F is a formally real field such that no proper algebraic extension of F is formally real. (In other words, the field is maximal in an algebraic closure with respect to the property of being formally real.) There is an ordering on F making it an ordered field such that, in this ordering, the intermediate value theorem holds for all polynomials over F with degree ≥ 0. F is a weakly o-minimal ordered field. If F is an ordered field, the Artin–Schreier theorem states that F has an algebraic extension, called the real closure K of F, such that K is a real closed field whose ordering is an extension of the given ordering on F, and is unique up to a unique isomorphism of fields identical on F (note that every ring homomorphism between real closed fields automatically is order preserving, because x ≤ y if and only if ∃z : y = x + z2).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.