En algèbre commutative, les corps de nombres superréels sont des extensions du corps des nombres réels plus générales que les corps de nombres hyperréels.
Soient X un espace de Tychonov, C(X) l'algèbre des fonctions continues sur X à valeurs réelles et P un idéal premier de C(X). Par construction, l'anneau quotient A = C(X)/P est un anneau intègre qui est une algèbre réelle et peut être muni d'un ordre total compatible avec sa structure algébrique. F, le corps des fractions de A, est appelé corps superréel si l'inclusion de dans F est stricte. Dans ce cas, et F sont non isomorphes en tant que corps ordonnés (on en déduit facilement qu'ils ne sont même pas isomorphes en tant que corps).
Si de plus l'idéal premier P est maximal (autrement dit si F = A), alors F est un corps de nombres hyperréels.
La terminologie est due à Dales et Woodin.
H. Garth Dales et W. Hugh Woodin, Super-Real Fields, Clarendon Press, 1996.
et M. Jerison, Rings of Continuous Functions, Van Nostrand, 1960.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En mathématiques, un corps réel clos est un corps totalement ordonnable dont aucune extension algébrique propre n'est totalement ordonnable. Les corps suivants sont réels clos : le corps des réels, le sous-corps des réels algébriques, le corps des réels calculables (au sens de Turing), le corps des , le corps des séries de Puiseux à coefficients réels, tout corps superréel (en particulier tout corps hyperréel).
En mathématiques, un nombre réel est un nombre qui peut être représenté par une partie entière et une liste finie ou infinie de décimales. Cette définition s'applique donc aux nombres rationnels, dont les décimales se répètent de façon périodique à partir d'un certain rang, mais aussi à d'autres nombres dits irrationnels, tels que la racine carrée de 2, π et e.
vignette|Représentation d'une partie de l'arbre des nombres surréels. En mathématiques, les nombres surréels sont les éléments d'une classe incluant celle des réels et celle des nombres ordinaux transfinis, et sur laquelle a été définie une structure de corps ; ceci signifie en particulier que l'on définit des inverses des nombres ordinaux transfinis ; ces ordinaux et leurs inverses sont respectivement plus grands et plus petits que n'importe quel nombre réel positif. Les surréels ne forment pas un ensemble au sens de la théorie usuelle.
The aim of this paper is to give new upper bounds for Euclidean minima of algebraic number fields. In particular, to show that Minkowski's conjecture holds for the maximal totally real subfields of cyclotomic fields of prime power conductor. ...