Francium is a chemical element with the symbol Fr and atomic number 87. It is extremely radioactive; its most stable isotope, francium-223 (originally called actinium K after the natural decay chain in which it appears), has a half-life of only 22 minutes. It is the second-most electropositive element, behind only caesium, and is the second rarest naturally occurring element (after astatine). Francium's isotopes decay quickly into astatine, radium, and radon. The electronic structure of a francium atom is [Rn] 7s1; thus, the element is classed as an alkali metal.
Bulk francium has never been seen. Because of the general appearance of the other elements in its periodic table column, it is presumed that francium would appear as a highly reactive metal if enough could be collected together to be viewed as a bulk solid or liquid. Obtaining such a sample is highly improbable since the extreme heat of decay resulting from its short half-life would immediately vaporize any viewable quantity of the element.
Francium was discovered by Marguerite Perey in France (from which the element takes its name) in 1939. Before its discovery, francium was referred to as eka-caesium or ekacaesium because of its conjectured existence below caesium in the periodic table. It was the last element first discovered in nature, rather than by synthesis. Outside the laboratory, francium is extremely rare, with trace amounts found in uranium ores, where the isotope francium-223 (in the family of uranium-235) continually forms and decays. As little as 200–500 g exists at any given time throughout the Earth's crust; aside from francium-223 and francium-221, its other isotopes are entirely synthetic. The largest amount produced in the laboratory was a cluster of more than 300,000 atoms.
Francium is one of the most unstable of the naturally occurring elements: its longest-lived isotope, francium-223, has a half-life of only 22 minutes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores the evolution of atomic theory, from indivisible particles to the quantum mechanical model of the atom, including the dual nature of electrons and the periodic table.
Explores laser operation basics, shot noise, and photodetectors' noise characteristics, emphasizing the importance of signal-to-noise ratio in signal detection.
The periodic table, also known as the periodic table of the elements, arranges the chemical elements into rows ("periods") and columns ("groups"). It is an organizing icon of chemistry and is widely used in physics and other sciences. It is a depiction of the periodic law, which says that when the elements are arranged in order of their atomic numbers an approximate recurrence of their properties is evident. The table is divided into four roughly rectangular areas called blocks.
Neptunium is a chemical element with the symbol Np and atomic number 93. A radioactive actinide metal, neptunium is the first transuranic element. Its position in the periodic table just after uranium, named after the planet Uranus, led to it being named after Neptune, the next planet beyond Uranus. A neptunium atom has 93 protons and 93 electrons, of which seven are valence electrons. Neptunium metal is silvery and tarnishes when exposed to air. The element occurs in three allotropic forms and it normally exhibits five oxidation states, ranging from +3 to +7.
Thorium is a weakly radioactive metallic chemical element with the symbol Th and atomic number 90. Thorium is light silver and tarnishes olive gray when it is exposed to air, forming thorium dioxide; it is moderately soft and malleable and has a high melting point. Thorium is an electropositive actinide whose chemistry is dominated by the +4 oxidation state; it is quite reactive and can ignite in air when finely divided. All known thorium isotopes are unstable. The most stable isotope, 232Th, has a half-life of 14.
Hexavalent chromium is among the most common and hazardous inorganic contaminants in soils and groundwater. A promising in situ bioremediation approach is the delivery of electron donors to stimulate microbially mediated Cr(VI) reduction, producing relativ ...
AMER CHEMICAL SOC2020
Ontological neighbourhood
:
:
:
, ,
Uranium isotopic signatures can be harnessed to monitor the reductive remediation of subsurface contamination or to reconstruct paleo-redox environments. However, the mechanistic underpinnings of the isotope fractionation associated with U reduction remain ...
2022
Water splitting offers the opportunity for storing solar energy and, thus, producing carbon-neutral and renewable solar fuels. The process, known as artificial photosynthesis, is limited by the electrocatalytic conversion of water into molecular oxygen. El ...