Summary
Fear is an intensely unpleasant emotion in response to perceiving or recognizing a danger or threat. Fear causes physiological changes that may produce behavioral reactions such as mounting an aggressive response or fleeing the threat. Fear in human beings may occur in response to a certain stimulus occurring in the present, or in anticipation or expectation of a future threat perceived as a risk to oneself. The fear response arises from the perception of danger leading to confrontation with or escape from/avoiding the threat (also known as the fight-or-flight response), which in extreme cases of fear (horror and terror) can be a freeze response. In humans and other animals, fear is modulated by the process of cognition and learning. Thus, fear is judged as rational and appropriate, or irrational and inappropriate. An irrational fear is called a phobia. Fear is closely related to the emotion anxiety, which occurs as the result of threats that are perceived to be uncontrollable or unavoidable. The fear response serves survival by engendering appropriate behavioral responses, so it has been preserved throughout evolution. Sociological and organizational research also suggests that individuals' fears are not solely dependent on their nature but are also shaped by their social relations and culture, which guide their understanding of when and how much fear to feel. Fear is sometimes incorrectly considered the opposite of courage. For the reason that courage is a willingness to face adversity, fear is an example of a condition that makes the exercise of courage possible. Many physiological changes in the body are associated with fear, summarized as the fight-or-flight response. An innate response for coping with danger, it works by accelerating the breathing rate (hyperventilation), heart rate, vasoconstriction of the peripheral blood vessels leading to blood pooling, increasing muscle tension including the muscles attached to each hair follicle to contract and causing "goosebumps", or more clinically, piloerection (making a cold person warmer or a frightened animal look more impressive), sweating, increased blood glucose (hyperglycemia), increased serum calcium, increase in white blood cells called neutrophilic leukocytes, alertness leading to sleep disturbance and "butterflies in the stomach" (dyspepsia).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
AR-505: Modernity, architecture and the environment
Theory course on modernist environmental aesthetics in architecture.
BIO-615: Neural circuits for reward and aversion learning
Animals must learn from past experiences, to adapt their behavior to an ever-changing environment. Students will learn about the neuronal circuit mechanisms of reward-based learning, and of aversively