Concept

Non-well-founded set theory

Summary
Non-well-founded set theories are variants of axiomatic set theory that allow sets to be elements of themselves and otherwise violate the rule of well-foundedness. In non-well-founded set theories, the foundation axiom of ZFC is replaced by axioms implying its negation. The study of non-well-founded sets was initiated by Dmitry Mirimanoff in a series of papers between 1917 and 1920, in which he formulated the distinction between well-founded and non-well-founded sets; he did not regard well-foundedness as an axiom. Although a number of axiomatic systems of non-well-founded sets were proposed afterwards, they did not find much in the way of applications until Peter Aczel’s hyperset theory in 1988. The theory of non-well-founded sets has been applied in the logical modelling of non-terminating computational processes in computer science (process algebra and final semantics), linguistics and natural language semantics (situation theory), philosophy (work on the Liar Paradox), and in a different setting, non-standard analysis. In 1917, Dmitry Mirimanoff introduced the concept of well-foundedness of a set: A set, x0, is well-founded if it has no infinite descending membership sequence In ZFC, there is no infinite descending ∈-sequence by the axiom of regularity. In fact, the axiom of regularity is often called the foundation axiom since it can be proved within ZFC− (that is, ZFC without the axiom of regularity) that well-foundedness implies regularity. In variants of ZFC without the axiom of regularity, the possibility of non-well-founded sets with set-like ∈-chains arises. For example, a set A such that A ∈ A is non-well-founded. Although Mirimanoff also introduced a notion of isomorphism between possibly non-well-founded sets, he considered neither an axiom of foundation nor of anti-foundation. In 1926, Paul Finsler introduced the first axiom that allowed non-well-founded sets. After Zermelo adopted Foundation into his own system in 1930 (from previous work of von Neumann 1925–1929) interest in non-well-founded sets waned for decades.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (2)
MATH-318: Set theory
Set Theory as a foundational system for mathematics. ZF, ZFC and ZF with atoms. Relative consistency of the Axiom of Choice, the Continuum Hypothesis, the reals as a countable union of countable sets,
CS-250: Algorithms I
The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
Related lectures (8)
Machine Learning for Behavioral Data
Introduces a course on Machine Learning for Behavioral Data at EPFL, covering ML algorithms, data handling, and model evaluation.
E-Voting: Election Phases and Security Measures
Discusses election phases, ballot security, privacy, and transparency in e-voting.
Minimum Spanning Trees: Prims Algorithm
Covers minimum spanning trees, disjoint-set data structures, union methods, and Prim's algorithm for finding minimum spanning trees.
Show more
Related publications (20)

An objective skill assessment framework for microsurgical anastomosis based on ALI scores

Aude Billard, Kunpeng Yao, Soheil Gholami, Torstein Ragnar Meling, Anaëlle Olivia Marie Manon

IntroductionThe current assessment and standardization of microsurgical skills are subjective, posing challenges in reliable skill evaluation. We aim to address these limitations by developing a quantitative and objective framework for accurately assessing ...
Vienna2024

LISA – A Modern Proof System

Viktor Kuncak, Simon Guilloud, Sankalp Gambhir

We present LISA, a proof system and proof assistant for constructing proofs in schematic first-order logic and axiomatic set theory. The logical kernel of the system is a proof checker for first-order logic with equality and schematic predicate and fun ...
2023

The Domestic Turn: Politics of Education from New College to The Palazzo Della Sapienza

Marson Korbi

Student accommodation became a problem only a century after the foundation of the first universities in Europe in the 12th century. At the very beginning students had to provide their own lodgings autonomously. In many university cities the situation prove ...
2023
Show more
Related concepts (9)
Ordinal number
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, nth, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally as linearly ordered labels that include the natural numbers and have the property that every set of ordinals has a least element (this is needed for giving a meaning to "the least unused element").
Von Neumann universe
In set theory and related branches of mathematics, the von Neumann universe, or von Neumann hierarchy of sets, denoted by V, is the class of hereditary well-founded sets. This collection, which is formalized by Zermelo–Fraenkel set theory (ZFC), is often used to provide an interpretation or motivation of the axioms of ZFC. The concept is named after John von Neumann, although it was first published by Ernst Zermelo in 1930. The rank of a well-founded set is defined inductively as the smallest ordinal number greater than the ranks of all members of the set.
New Foundations
In mathematical logic, New Foundations (NF) is an axiomatic set theory, conceived by Willard Van Orman Quine as a simplification of the theory of types of Principia Mathematica. Quine first proposed NF in a 1937 article titled "New Foundations for Mathematical Logic"; hence the name. Much of this entry discusses NF with urelements (NFU), an important variant of NF due to Jensen and clarified by Holmes. In 1940 and in a revision in 1951, Quine introduced an extension of NF sometimes called "Mathematical Logic" or "ML", that included proper classes as well as sets.
Show more