Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
La théorie des ensembles non bien fondés est une variante de la théorie axiomatique des ensembles qui permet aux ensembles de s'appartenir les uns aux autres sans limite. Autrement dit, c'est une théorie des ensembles qui ne satisfait pas l'axiome de fondation. Plus précisément, dans la théorie des ensembles non bien fondés, l'axiome de fondation de ZFC est remplacé par un axiome impliquant sa négation. L'étude des ensembles non-bien-fondés a été initiée par Demetrius Mirimanoffdans une série d'articles qu'il a publié en français entre 1917 et 1920 et dans lesquels il énonce une distinction entre des suites bien fondées et des suites non bien fondées ; cependant il ne fait pas recours à un axiome de bonne fondation. Alors que plusieurs axiomatiques pour les ensembles non bien fondés ont été proposées par la suite, aucune n'a trouvé d'application jusqu'à ce que Peter Aczel propose sa théorie des hyper-ensembles en 1988. La théorie des ensembles non-bien-fondés permet d'offrir des modèles pour la non-terminaison des calculs de processus en informatique (algèbre de processus), pour la linguistique et pour la sémantique du langage naturel. De plus elle a des applications en philosophie (paradoxe du menteur ) et en analyse non standard. Pour analyser les paradoxes de Burali-Forti et de Russell, Demetrius Mirimanoff introduit, en 1917, le concept de bonne fondation d'un ensemble: Un ensemble est bien-fondé ssi il n'est pas à l'origine d'une suite d'appartenance infinie: Grâce à l'axiome de fondation, dans ZFC, il n'y a pas de suite infinie descendante d'appartenance. En revanche, dans les variantes de ZFC sans l'axiome de fondation, il peut y en avoir, comme par exemple celle engendrée par un ensemble tel que . Alors que Mirimanoff a introduit une notion d'isomorphisme entre ensembles potentiellement non bien fondés, il ne considère ni un axiome de fondation, ni un axiome d'anti-fondation. En 1926 Paul Finsler introduit le premier axiome qui autorise les ensembles non bien fondés.
Viktor Kuncak, Simon Guilloud, Sankalp Gambhir
Aude Billard, Kunpeng Yao, Soheil Gholami, Torstein Ragnar Meling, Anaëlle Olivia Marie Manon