Summary
High-temperature electrolysis (also HTE or steam electrolysis or HTSE) is a technology for producing hydrogen from water at high temperatures. High temperature electrolysis is more efficient economically than traditional room-temperature electrolysis because some of the energy is supplied as heat, which is cheaper than electricity, and also because the electrolysis reaction is more efficient at higher temperatures. In fact, at 2500 °C, electrical input is unnecessary because water breaks down to hydrogen and oxygen through thermolysis. Such temperatures are impractical; proposed HTE systems operate between 100 °C and 850 °C. If one assumes that the electricity used comes from a heat engine, it takes 141.86 megajoules (MJ) of heat energy to produce one kg of hydrogen, for the HTE process itself and for the electricity required. At 100 °C, 350 MJ of thermal energy are required (41% efficient). At 850 °C, 225 MJ are required (64% efficient). Above 850 °C, one begins to exceed the capacity of standard chromium steels to resist corrosion, and it's already no easy matter to design and implement an industrial scale chemical process to operate at such a high temperature point. The selection of the materials for the electrodes and electrolyte in a solid oxide electrolyser cell is essential. One option being investigated for the process used yttria-stabilized zirconia (YSZ) electrolytes, Nickel (Ni)-cermet steam/Hydrogen electrodes, and mixed Oxide of Lanthanum oxide (La2O3), Strontium and Cobalt oxygen electrodes. Even with HTE, electrolysis is a fairly inefficient way to store energy. Significant conversion losses of energy occur both in the electrolysis process, and in the conversion of the resulting hydrogen back into power. At current hydrocarbon prices, HTE can not compete with pyrolysis of hydrocarbons as an economical source of hydrogen, which produces carbon dioxide as a by-product. HTE is of interest as a more efficient route to the production "green" hydrogen, to be used as a carbon neutral fuel and general energy storage.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
ENG-410: Energy supply, economics and transition
This course examines the supply of energy from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the demand, and how t
ME-460: Renewable energy (for ME)
The students assess and compare all renewable energy resources, their real potentials, limitations and best applications (energy services). Solar thermal, solar electric, wood, bioliquids, biogas, hyd
Related lectures (39)
Energy Transition and Modeling
Discusses hydrogen's role in the future energy mix, key drivers of energy transition, challenges in modeling domestic energy demand, and integration of energy models.
Batteries, fuel cells and electrolysis: Losses
Discusses losses in batteries, fuel cells, and electrolysis, as well as fuel cell electrical efficiency and a comparison between hydrogen and methane fuel cells.
CO2 Electrolyzers
Explores CO2 electrolyzers, focusing on catalysts, selectivity, and the role of copper.
Show more
Related publications (116)
Related concepts (3)
Water splitting
Water splitting is the chemical reaction in which water is broken down into oxygen and hydrogen: 2 H2O → 2 H2 + O2 Efficient and economical water splitting would be a technological breakthrough that could underpin a hydrogen economy, based on green hydrogen. A version of water splitting occurs in photosynthesis, but hydrogen is not produced. The reverse of water splitting is the basis of the hydrogen fuel cell. Electrolysis of water Electrolysis of water is the decomposition of water (H2O) into oxygen (O2) and hydrogen (H2) due to an electric current being passed through the water.
Hydrogen production
Hydrogen production is the family of industrial methods for generating hydrogen gas. As of 2020, the majority of hydrogen (~95%) is produced from fossil fuels by steam reforming of natural gas and other light hydrocarbons, partial oxidation of heavier hydrocarbons, and coal gasification. Other methods of hydrogen production include biomass gasification, methane pyrolysis, and electrolysis of water. Methane pyrolysis and water electrolysis can use any source of electricity including solar power.
Electrolysis of water
Electrolysis of water is using electricity to split water into oxygen (O2) and hydrogen (H2) gas by electrolysis. Hydrogen gas released in this way can be used as hydrogen fuel, but must be kept apart from the oxygen as the mixture would be extremely explosive. Separately pressurised into convenient 'tanks' or 'gas bottles', hydrogen can be used for oxyhydrogen welding and other applications, as the hydrogen / oxygen flame can reach circa 2,800°C. Water electrolysis requires a minimum potential difference of 1.