An electricity meter, electric meter, electrical meter, energy meter, or kilowatt-hour meter is a device that measures the amount of electric energy consumed by a residence, a business, or an electrically powered device.
Electric meter or energy meter measures the total power consumed over a time interval.
Electric utilities use electric meters installed at customers' premises for billing and monitoring purposes. They are typically calibrated in billing units, the most common one being the kilowatt hour (kWh). They are usually read once each billing period.
When energy savings during certain periods are desired, some meters may measure demand, the maximum use of power in some interval. "Time of day" metering allows electric rates to be changed during a day, to record usage during peak high-cost periods and off-peak, lower-cost, periods. Also, in some areas meters have relays for demand response load shedding during peak load periods.
As commercial use of electric energy spread in the 1880s, it became increasingly important that an electric energy meter, similar to the then existing gas meters, was required to properly bill customers, instead of billing for a fixed number of lamps per month.
DC meters measured charge in ampere hours. Since the voltage of the supply should remain substantially constant, the reading of the meter was proportional to actual energy consumed. For example, if a meter recorded that 100 ampere hours had been consumed on a 200-volt supply, then 20 kilowatt-hours of energy had been supplied.
Many experimental types of meter were developed. Thomas Edison at first worked on a direct current (DC) electromechanical meter with a direct reading register, but instead developed an electrochemical metering system, which used an electrolytic cell to totalise current consumption. At periodic intervals the plates were removed and weighed, and the customer billed. The electrochemical meter was labor-intensive to read and not well received by customers.
An early type of electrochemical meter used in the United Kingdom was the 'Reason' meter.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours propose une introduction à l'électrotechnique. Les lois fondamentales de l'électricité et différents composants d'un circuit électrique linéaire seront étudiés. L'analyse élémentaire des circ
La première partie du cours décrit les méthodes classiques de synthèse asymétrique. La seconde partie du cours traite des stratégies de rétrosynthèse basées sur l'approche par disconnection.
This course examines the supply of energy from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the demand, and how t
A smart grid is an electrical grid which includes a variety of operation and energy measures including: Advanced metering infrastructure (of which smart meters are a generic name for any utility side device even if it is more capable e.g. a fiber optic router) Smart distribution boards and circuit breakers integrated with home control and demand response (behind the meter from a utility perspective) Load control switches and smart appliances, often financed by efficiency gains on municipal programs (e.g.
A polyphase system is a means of distributing alternating-current (AC) electrical power where the power transfer is constant during each electrical cycle. AC phase refers to the phase offset value (in degrees) between AC in multiple conducting wires; phases may also refer to the corresponding terminals and conductors, as in color codes. Polyphase systems have three or more energized electrical conductors carrying alternating currents with a defined phase between the voltage waves in each conductor; for three-phase voltage, the phase angle is 120° or 2π/3 radians (although early systems used 4 wire two-phase).
Solar power is the conversion of energy from sunlight into electricity, either directly using photovoltaics (PV) or indirectly using concentrated solar power. Photovoltaic cells convert light into an electric current using the photovoltaic effect. Concentrated solar power systems use lenses or mirrors and solar tracking systems to focus a large area of sunlight to a hot spot, often to drive a steam turbine.
Machine learning techniques have been extensively developed in the field of electricity theft detection. However, almost all typical models primarily rely on electricity consumption data to identify fraudulent users, often neglecting other pertinent househ ...
Supervised machine learning models are receiving increasing attention in electricity theft detection due to their high detection accuracy. However, their performance depends on a massive amount of labeled training data, which comes from time-consuming and ...
The integrations of advanced metering infrastructure and smart meters make it possible to detect electricity thieves by analyzing electricity consumption readings. However, the detection accuracies of traditional models are limited due to their difficulty ...