In mathematics, the Siegel upper half-space of degree g (or genus g) (also called the Siegel upper half-plane) is the set of g × g symmetric matrices over the complex numbers whose imaginary part is positive definite. It was introduced by . It is the symmetric space associated to the symplectic group Sp(2g, R).
The Siegel upper half-space has properties as a complex manifold that generalize the properties of the upper half-plane, which is the Siegel upper half-space in the special case g = 1. The group of automorphisms preserving the complex structure of the manifold is isomorphic to the symplectic group Sp(2g, R). Just as the two-dimensional hyperbolic metric is the unique (up to scaling) metric on the upper half-plane whose isometry group is the complex automorphism group SL(2, R) = Sp(2, R), the Siegel upper half-space has only one metric up to scaling whose isometry group is Sp(2g, R). Writing a generic matrix Z in the Siegel upper half-space in terms of its real and imaginary parts as Z = X + iY, all metrics with isometry group Sp(2g, R) are proportional to
The Siegel upper half-plane can be identified with the set of tame almost complex structures compatible with a symplectic structure , on the underlying dimensional real vector space , that is, the set of such that and for all vectors .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, Siegel modular forms are a major type of automorphic form. These generalize conventional elliptic modular forms which are closely related to elliptic curves. The complex manifolds constructed in the theory of Siegel modular forms are Siegel modular varieties, which are basic models for what a moduli space for abelian varieties (with some extra level structure) should be and are constructed as quotients of the Siegel upper half-space rather than the upper half-plane by discrete groups.
In mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.