Concept

Siegel upper half-space

Summary
In mathematics, the Siegel upper half-space of degree g (or genus g) (also called the Siegel upper half-plane) is the set of g × g symmetric matrices over the complex numbers whose imaginary part is positive definite. It was introduced by . It is the symmetric space associated to the symplectic group Sp(2g, R). The Siegel upper half-space has properties as a complex manifold that generalize the properties of the upper half-plane, which is the Siegel upper half-space in the special case g = 1. The group of automorphisms preserving the complex structure of the manifold is isomorphic to the symplectic group Sp(2g, R). Just as the two-dimensional hyperbolic metric is the unique (up to scaling) metric on the upper half-plane whose isometry group is the complex automorphism group SL(2, R) = Sp(2, R), the Siegel upper half-space has only one metric up to scaling whose isometry group is Sp(2g, R). Writing a generic matrix Z in the Siegel upper half-space in terms of its real and imaginary parts as Z = X + iY, all metrics with isometry group Sp(2g, R) are proportional to The Siegel upper half-plane can be identified with the set of tame almost complex structures compatible with a symplectic structure , on the underlying dimensional real vector space , that is, the set of such that and for all vectors .
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.