In mathematics, Siegel modular forms are a major type of automorphic form. These generalize conventional elliptic modular forms which are closely related to elliptic curves. The complex manifolds constructed in the theory of Siegel modular forms are Siegel modular varieties, which are basic models for what a moduli space for abelian varieties (with some extra level structure) should be and are constructed as quotients of the Siegel upper half-space rather than the upper half-plane by discrete groups.
Siegel modular forms are holomorphic functions on the set of symmetric n × n matrices with positive definite imaginary part; the forms must satisfy an automorphy condition. Siegel modular forms can be thought of as multivariable modular forms, i.e. as special functions of several complex variables.
Siegel modular forms were first investigated by for the purpose of studying quadratic forms analytically. These primarily arise in various branches of number theory, such as arithmetic geometry and elliptic cohomology. Siegel modular forms have also been used in some areas of physics, such as conformal field theory and black hole thermodynamics in string theory.
Let and define
the Siegel upper half-space. Define the symplectic group of level , denoted by as
where is the identity matrix. Finally, let
be a rational representation, where is a finite-dimensional complex vector space.
Given
and
define the notation
Then a holomorphic function
is a Siegel modular form of degree (sometimes called the genus), weight , and level if
for all .
In the case that , we further require that be holomorphic 'at infinity'. This assumption is not necessary for due to the Koecher principle, explained below. Denote the space of weight , degree , and level Siegel modular forms by
Some methods for constructing Siegel modular forms include:
Eisenstein series
Theta functions of lattices (possibly with a pluri-harmonic polynomial)
Saito–Kurokawa lift for degree 2
Ikeda lift
Miyawaki lift
Products of Siegel modular forms.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, the Siegel upper half-space of degree g (or genus g) (also called the Siegel upper half-plane) is the set of g × g symmetric matrices over the complex numbers whose imaginary part is positive definite. It was introduced by . It is the symmetric space associated to the symplectic group Sp(2g, R). The Siegel upper half-space has properties as a complex manifold that generalize the properties of the upper half-plane, which is the Siegel upper half-space in the special case g = 1.
In mathematics, a Siegel modular variety or Siegel moduli space is an algebraic variety that parametrizes certain types of abelian varieties of a fixed dimension. More precisely, Siegel modular varieties are the moduli spaces of principally polarized abelian varieties of a fixed dimension. They are named after Carl Ludwig Siegel, the 20th-century German number theorist who introduced the varieties in 1943. Siegel modular varieties are the most basic examples of Shimura varieties.
Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication).
In this course we will introduce core concepts of the theory of modular forms and consider several applications of this theory to combinatorics, harmonic analysis, and geometric optimization.
This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number th
In this course we will describe in numerous examples how methods from l-adic cohomology as developed by Grothendieck, Deligne and Katz can interact with methods from analytic number theory (prime numb
We prove that every Schwartz function in Euclidean space can be completely recovered given only its restrictions and the restrictions of its Fourier transform to all origin-centered spheres whose radii are square roots of integers. In particular, the only ...
EPFL2022
, ,
We prove that the Cohn-Elkies linear programming bound for sphere packing is not sharp in dimension 6. The proof uses duality and optimization over a space of modular forms, generalizing a construction of Cohn-Triantafillou to the case of odd weight and no ...
We prove that the Cohn-Elkies linear programming bound for sphere packing is not sharp in dimension 6. The proof uses duality and optimization over a space of modular forms, generalizing a construction of Cohn- Triantafillou [Math. Comp. 91 (2021), pp. 491 ...