Summary
Pyrosequencing is a method of DNA sequencing (determining the order of nucleotides in DNA) based on the "sequencing by synthesis" principle, in which the sequencing is performed by detecting the nucleotide incorporated by a DNA polymerase. Pyrosequencing relies on light detection based on a chain reaction when pyrophosphate is released. Hence, the name pyrosequencing. The principle of pyrosequencing was first described in 1993 by, Bertil Pettersson, Mathias Uhlen and Pål Nyren by combining the solid phase sequencing method using streptavidin coated magnetic beads with recombinant DNA polymerase lacking 3 ́to 5 ́exonuclease activity (proof-reading) and luminescence detection using the firefly luciferase enzyme. A mixture of three enzymes (DNA polymerase, ATP sulfurylase and firefly luciferase) and a nucleotide (dNTP) are added to single stranded DNA to be sequenced and the incorporation of nucleotide is followed by measuring the light emitted. The intensity of the light determines if 0, 1 or more nucleotides have been incorporated, thus showing how many complementary nucleotides are present on the template strand. The nucleotide mixture is removed before the next nucleotide mixture is added. This process is repeated with each of the four nucleotides until the DNA sequence of the single stranded template is determined. A second solution-based method for pyrosequencing was described in 1998 by Mostafa Ronaghi, Mathias Uhlen and Pål Nyren. In this alternative method, an additional enzyme apyrase is introduced to remove nucleotides that are not incorporated by the DNA polymerase. This enabled the enzyme mixture including the DNA polymerase, the luciferase and the apyrase to be added at the start and kept throughout the procedure, thus providing a simple set-up suitable for automation. An automated instrument based on this principle was introduced to the market the following year by the company Pyrosequencing. A third microfluidic variant of the pyrosequencing method was described in 2005 by Jonathan Rothberg and co-workers at the company 454 Life Sciences.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood