Summary
In statistics, censoring is a condition in which the value of a measurement or observation is only partially known. For example, suppose a study is conducted to measure the impact of a drug on mortality rate. In such a study, it may be known that an individual's age at death is at least 75 years (but may be more). Such a situation could occur if the individual withdrew from the study at age 75, or if the individual is currently alive at the age of 75. Censoring also occurs when a value occurs outside the range of a measuring instrument. For example, a bathroom scale might only measure up to 140 kg. If a 160-kg individual is weighed using the scale, the observer would only know that the individual's weight is at least 140 kg. The problem of censored data, in which the observed value of some variable is partially known, is related to the problem of missing data, where the observed value of some variable is unknown. Censoring should not be confused with the related idea truncation. With censoring, observations result either in knowing the exact value that applies, or in knowing that the value lies within an interval. With truncation, observations never result in values outside a given range: values in the population outside the range are never seen or never recorded if they are seen. Note that in statistics, truncation is not the same as rounding. Left censoring – a data point is below a certain value but it is unknown by how much. Interval censoring – a data point is somewhere on an interval between two values. Right censoring – a data point is above a certain value but it is unknown by how much. Type I censoring occurs if an experiment has a set number of subjects or items and stops the experiment at a predetermined time, at which point any subjects remaining are right-censored. Type II censoring occurs if an experiment has a set number of subjects or items and stops the experiment when a predetermined number are observed to have failed; the remaining subjects are then right-censored.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.