In statistics, censoring is a condition in which the value of a measurement or observation is only partially known. For example, suppose a study is conducted to measure the impact of a drug on mortality rate. In such a study, it may be known that an individual's age at death is at least 75 years (but may be more). Such a situation could occur if the individual withdrew from the study at age 75, or if the individual is currently alive at the age of 75. Censoring also occurs when a value occurs outside the range of a measuring instrument. For example, a bathroom scale might only measure up to 140 kg. If a 160-kg individual is weighed using the scale, the observer would only know that the individual's weight is at least 140 kg. The problem of censored data, in which the observed value of some variable is partially known, is related to the problem of missing data, where the observed value of some variable is unknown. Censoring should not be confused with the related idea truncation. With censoring, observations result either in knowing the exact value that applies, or in knowing that the value lies within an interval. With truncation, observations never result in values outside a given range: values in the population outside the range are never seen or never recorded if they are seen. Note that in statistics, truncation is not the same as rounding. Left censoring – a data point is below a certain value but it is unknown by how much. Interval censoring – a data point is somewhere on an interval between two values. Right censoring – a data point is above a certain value but it is unknown by how much. Type I censoring occurs if an experiment has a set number of subjects or items and stops the experiment at a predetermined time, at which point any subjects remaining are right-censored. Type II censoring occurs if an experiment has a set number of subjects or items and stops the experiment when a predetermined number are observed to have failed; the remaining subjects are then right-censored.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
MATH-449: Biostatistics
This course covers statistical methods that are widely used in medicine and biology. A key topic is the analysis of longitudinal data: that is, methods to evaluate exposures, effects and outcomes that
Séances de cours associées (9)
Analyse de survie : Modélisation et estimation
Couvre l'analyse des données de survie, la régression de Cox, l'estimateur de Kaplan-Meier et le test de log-rank.
Essais d'hypothèse statistique
Couvre les tests d'hypothèses statistiques, les intervalles de confiance, les valeurs p et les niveaux de signification dans les tests d'hypothèses.
Analyse de survie: Modèle de risques proportionnels de Cox
Introduit le modèle des risques proportionnels de Cox pour l'analyse de la survie, couvrant l'estimation, l'évaluation des hypothèses et l'interprétation à l'aide des résidus.
Afficher plus
Publications associées (15)
Personnes associées (1)
Concepts associés (6)
Données manquantes
En statistiques, les données manquantes ou les valeurs manquantes se produisent lorsqu’aucune valeur de données n’est représentée pour une variable pour une observation donnée. Les données manquantes sont courantes et peuvent avoir un effet significatif sur l'inférence, les performances de prédiction ou toute autre utilisation faite avec les données. Des données manquantes peuvent exister dans les données en raison d'une « omission de réponse » pour l'observation donnée.
Analyse de survie
thumb|Exemple de courbe de survie. L'analyse de (la) survie est une branche des statistiques qui cherche à modéliser le temps restant avant la mort pour des organismes biologiques (l'espérance de vie) ou le temps restant avant l'échec ou la panne dans les systèmes artificiels, ce que l'on représente graphiquement sous la forme d'une courbe de survie. On parle aussi d'analyse de la fiabilité en ingénierie, d'analyse de la durée en économie ou d'analyse de l'histoire d'événements en sociologie.
Taux de défaillance
Le taux de défaillance, ou taux de panne, est une expression relative à la fiabilité des équipements et de chacun de leurs composants. Son symbole est la lettre grecque λ (lambda). Le taux de défaillance d'un équipement à l'instant t est la limite, si elle existe, du quotient de la probabilité conditionnelle que l'instant T de la (première) défaillance de cet équipement soit compris dans l'intervalle de temps donné [t, t + Δt] par la durée Δt de cet intervalle, lorsque Δt tend vers zéro, en supposant que l'entité soit disponible au début de l'intervalle de temps.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.