Publication

Estimation of Self-Exciting Point Processes from Time-Censored Data

Résumé

Self-exciting point processes, widely used to model arrival phenomena in nature and society, are often difficult to identify. The estimation becomes even more challenging when arrivals are recorded only as bin counts on a finite partition of the observation interval. In this paper, we propose the recursive identification with sample correction (RISC) algorithm for the estimation of process parameters from time-censored data. In every iteration, a synthetic sample path is generated and corrected to match the observed bin counts. Then the process parameters update and a unique iteration is performed to successively approximate the stochastic characteristics of the observed process. In terms of finite-sample approximation error, the proposed RISC framework performs favorably over extant methods, as well as compared to a naïve locally uniform sample redistribution. The results of an extensive numerical experiment indicate that the reconstruction of an intrabin history based on the conditional intensity of the process is crucial for attaining superior performance in terms of estimation error.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.