Summary
A stellar magnetic field is a magnetic field generated by the motion of conductive plasma inside a star. This motion is created through convection, which is a form of energy transport involving the physical movement of material. A localized magnetic field exerts a force on the plasma, effectively increasing the pressure without a comparable gain in density. As a result, the magnetized region rises relative to the remainder of the plasma, until it reaches the star's photosphere. This creates starspots on the surface, and the related phenomenon of coronal loops. The magnetic field of a star can be measured by means of the Zeeman effect. Normally the atoms in a star's atmosphere will absorb certain frequencies of energy in the electromagnetic spectrum, producing characteristic dark absorption lines in the spectrum. When the atoms are within a magnetic field, however, these lines become split into multiple, closely spaced lines. The energy also becomes polarized with an orientation that depends on orientation of the magnetic field. Thus the strength and direction of the star's magnetic field can be determined by examination of the Zeeman effect lines. A stellar spectropolarimeter is used to measure the magnetic field of a star. This instrument consists of a spectrograph combined with a polarimeter. The first instrument to be dedicated to the study of stellar magnetic fields was NARVAL, which was mounted on the Bernard Lyot Telescope at the Pic du Midi de Bigorre in the French Pyrenees mountains. Various measurements—including magnetometer measurements over the last 150 years; 14C in tree rings; and 10Be in ice cores—have established substantial magnetic variability of the Sun on decadal, centennial and millennial time scales. Stellar magnetic fields, according to solar dynamo theory, are caused within the convective zone of the star. The convective circulation of the conducting plasma functions like a dynamo. This activity destroys the star's primordial magnetic field, then generates a dipolar magnetic field.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related lectures (11)
Stellar Orbits: Surfaces and Families
Explores orbits in non-axisymmetric potentials and visualizes phase space in planar potentials.
Pulsating and Rotating Fields: EquationsMOOC: Conversion electromécanique II
Covers the generation of pulsating and rotating fields and the equations involved.
Stellar Orbits: Lindblad Resonances and Collisionless Boltzmann Equation
Explores weak bars, resonances, and equilibria in stellar systems.
Show more
Related publications (97)