In celestial mechanics, a horseshoe orbit is a type of co-orbital motion of a small orbiting body relative to a larger orbiting body. The osculating (instantaneous) orbital period of the smaller body remains very near that of the larger body, and if its orbit is a little more eccentric than that of the larger body, during every period it appears to trace an ellipse around a point on the larger object's orbit.
However, the loop is not closed but drifts forward or backward so that the point it circles will appear to move smoothly along the larger body's orbit over a long period of time. When the object approaches the larger body closely at either end of its trajectory, its apparent direction changes. Over an entire cycle the center traces the outline of a horseshoe, with the larger body between the 'horns'.
Asteroids in horseshoe orbits with respect to Earth include 54509 YORP, , , and possibly . A broader definition includes 3753 Cruithne, which can be said to be in a compound and/or transition orbit, or and . By 2016, 12 horseshoe librators of Earth have been discovered.
Saturn's moons Epimetheus and Janus occupy horseshoe orbits with respect to each other (in their case, there is no repeated looping: each one traces a full horseshoe with respect to the other).
The following explanation relates to an asteroid which is in such an orbit around the Sun, and is also affected by the Earth.
The asteroid is in almost the same solar orbit as Earth. Both take approximately one year to orbit the Sun.
It is also necessary to grasp two rules of orbit dynamics:
A body closer to the Sun completes an orbit more quickly than a body farther away.
If a body accelerates along its orbit, its orbit moves outwards from the Sun. If it decelerates, the orbital radius decreases.
The horseshoe orbit arises because the gravitational attraction of the Earth changes the shape of the elliptical orbit of the asteroid. The shape changes are very small but result in significant changes relative to the Earth.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
We investigate the response of the free liquid surface in a partially filled circular cylindrical container undergoing a planar elliptic and time-periodic orbit while maintaining fixed its orientation. For small forcing amplitudes and deep liquid layers, w ...
College Pk2023
This course is a "concepts" course. It introduces a variety of concepts in use in the design of a space mission, manned or unmanned, and in space operations. it is partly based on the practical space
The aim of this course is to acquire the basic knowledge on specific dynamical phenomena related to the origin, equilibrium, and evolution of star
clusters, galaxies, and galaxy clusters.
This course offers an introduction to topics in stochastic analysis, oriented about theory of multi-scale stochastic dynamics. We shall learn the fundamental ideas, relevant techniques, and in general
Context. We report the exploitation of a sample of Solar System observations based on data from the third Gaia Data Release (Gaia DR3) of nearly 157 000 asteroids. It extends the epoch astrometric solution over the time coverage planned for the Gaia DR4, w ...
Les Ulis Cedex A2023
In astronomy, a trojan is a small celestial body (mostly asteroids) that shares the orbit of a larger body, remaining in a stable orbit approximately 60° ahead of or behind the main body near one of its Lagrangian points and . Trojans can share the orbits of planets or of large moons. Trojans are one type of co-orbital object. In this arrangement, a star and a planet orbit about their common barycenter, which is close to the center of the star because it is usually much more massive than the orbiting planet.
In astronomy, a co-orbital configuration is a configuration of two or more astronomical objects (such as asteroids, moons, or planets) orbiting at the same, or very similar, distance from their primary, i.e. they are in a 1:1 mean-motion resonance. (or 1:−1 if orbiting in opposite directions). There are several classes of co-orbital objects, depending on their point of libration. The most common and best-known class is the trojan, which librates around one of the two stable Lagrangian points (Trojan points), and , 60° ahead of and behind the larger body respectively.
A halo orbit is a periodic, three-dimensional orbit near one of the L1, L2 or L3 Lagrange points in the three-body problem of orbital mechanics. Although a Lagrange point is just a point in empty space, its peculiar characteristic is that it can be orbited by a Lissajous orbit or by a halo orbit. These can be thought of as resulting from an interaction between the gravitational pull of the two planetary bodies and the Coriolis and centrifugal force on a spacecraft. Halo orbits exist in any three-body system, e.
We report the discovery of a surprising binary configuration of the double-mode Cepheid OGLE-LMC-CEP-1347 pulsating in the first (P-1= 0.690 days) and second-overtone (P-2= 0.556 days) modes. The orbital period (P-orb= 59 days) of the system is five times ...