Geometry (from the γεωμετρία; geo- "earth", -metron "measurement") arose as the field of knowledge dealing with spatial relationships. Geometry was one of the two fields of pre-modern mathematics, the other being the study of numbers (arithmetic).
Classic geometry was focused in compass and straightedge constructions. Geometry was revolutionized by Euclid, who introduced mathematical rigor and the axiomatic method still in use today. His book, The Elements is widely considered the most influential textbook of all time, and was known to all educated people in the West until the middle of the 20th century.
In modern times, geometric concepts have been generalized to a high level of abstraction and complexity, and have been subjected to the methods of calculus and abstract algebra, so that many modern branches of the field are barely recognizable as the descendants of early geometry. (See Areas of mathematics and Algebraic geometry.)
The earliest recorded beginnings of geometry can be traced to early peoples, such as the ancient Indus Valley (see Harappan mathematics) and ancient Babylonia (see Babylonian mathematics) from around 3000 BC. Early geometry was a collection of empirically discovered principles concerning lengths, angles, areas, and volumes, which were developed to meet some practical need in surveying, construction, astronomy, and various crafts. Among these were some surprisingly sophisticated principles, and a modern mathematician might be hard put to derive some of them without the use of calculus and algebra. For example, both the Egyptians and the Babylonians were aware of versions of the Pythagorean theorem about 1500 years before Pythagoras and the Indian Sulba Sutras around 800 BC contained the first statements of the theorem; the Egyptians had a correct formula for the volume of a frustum of a square pyramid.
Egyptian geometry
The ancient Egyptians knew that they could approximate the area of a circle as follows:
Area of Circle ≈ [ (Diameter) x 8/9 ]2.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The history of mathematics deals with the origin of discoveries in mathematics and the mathematical methods and notation of the past. Before the modern age and the worldwide spread of knowledge, written examples of new mathematical developments have come to light only in a few locales. From 3000 BC the Mesopotamian states of Sumer, Akkad and Assyria, followed closely by Ancient Egypt and the Levantine state of Ebla began using arithmetic, algebra and geometry for purposes of taxation, commerce, trade and also in the patterns in nature, the field of astronomy and to record time and formulate calendars.
Algebra can essentially be considered as doing computations similar to those of arithmetic but with non-numerical mathematical objects. However, until the 19th century, algebra consisted essentially of the theory of equations. For example, the fundamental theorem of algebra belongs to the theory of equations and is not, nowadays, considered as belonging to algebra (in fact, every proof must use the completeness of the real numbers, which is not an algebraic property).
Babylonian mathematics (also known as Assyro-Babylonian mathematics) are the mathematics developed or practiced by the people of Mesopotamia, from the days of the early Sumerians to the centuries following the fall of Babylon in 539 BC. Babylonian mathematical texts are plentiful and well edited. With respect to time they fall in two distinct groups: one from the Old Babylonian period (1830–1531 BC), the other mainly Seleucid from the last three or four centuries BC.
Explores the historical significance of geometric constructions, particularly the duplication of the cube problem and its relevance in ancient architecture and military engineering.
This paper tackles the problem of novel view synthesis from a single image. In particular, we target real-world scenes with rich geometric structure, a challenging task due to the large appearance variations of such scenes and the lack of simple 3D models ...
Humans exhibit outstanding learning and adaptation capabilities while performing various types of manipulation tasks. When learning new skills, humans are able to extract important information by observing examples of a task and efficiently refine a priori ...
Bulk CMOS technologies left the semiconductor market to the novel device geometries such as FDSOI and FinFET below 30 nm, mainly due to their insufficient electrical characteristics arising from different physical limitations. These innovative solutions en ...