In mathematics, the gluing axiom is introduced to define what a sheaf on a topological space must satisfy, given that it is a presheaf, which is by definition a contravariant functor
to a category which initially one takes to be the . Here is the partial order of open sets of ordered by inclusion maps; and considered as a category in the standard way, with a unique morphism
if is a subset of , and none otherwise.
As phrased in the sheaf article, there is a certain axiom that must satisfy, for any open cover of an open set of . For example, given open sets and with union and intersection , the required condition is that
is the subset of With equal image in
In less formal language, a of over is equally well given by a pair of sections : on and respectively, which 'agree' in the sense that and have a common image in under the respective restriction maps
and
The first major hurdle in sheaf theory is to see that this gluing or patching axiom is a correct abstraction from the usual idea in geometric situations. For example, a vector field is a section of a tangent bundle on a smooth manifold; this says that a vector field on the union of two open sets is (no more and no less than) vector fields on the two sets that agree where they overlap.
Given this basic understanding, there are further issues in the theory, and some will be addressed here. A different direction is that of the Grothendieck topology, and yet another is the logical status of 'local existence' (see Kripke–Joyal semantics).
To rephrase this definition in a way that will work in any category that has sufficient structure, we note that we can write the objects and morphisms involved in the definition above in a diagram which we will call (G), for "gluing":
Here the first map is the product of the restriction maps
and each pair of arrows represents the two restrictions
and
It is worthwhile to note that these maps exhaust all of the possible restriction maps among , the , and the .
The condition for to be a sheaf is that for any open set and any collection of open sets whose union is , the diagram (G) above is an equalizer.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
In mathematics, specifically in algebraic topology and algebraic geometry, an inverse image functor is a contravariant construction of sheaves; here “contravariant” in the sense given a map , the inverse image functor is a functor from the of sheaves on Y to the category of sheaves on X. The is the primary operation on sheaves, with the simplest definition. The inverse image exhibits some relatively subtle features. Suppose we are given a sheaf on and that we want to transport to using a continuous map .
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart.
In mathematics, a ringed space is a family of (commutative) rings parametrized by open subsets of a topological space together with ring homomorphisms that play roles of restrictions. Precisely, it is a topological space equipped with a sheaf of rings called a structure sheaf. It is an abstraction of the concept of the rings of continuous (scalar-valued) functions on open subsets. Among ringed spaces, especially important and prominent is a locally ringed space: a ringed space in which the analogy between the stalk at a point and the ring of germs of functions at a point is valid.
Classical Serre-Tate theory describes deformations of ordinary abelian varieties. It implies that every such variety has a canonical lift to characteristic zero and equips the base of its universal deformation with a Frobenius lifting and canonical multipl ...
The objective of this PhD thesis is the approximate computation of the solutions of the Spectral Problem associated with the Laplace operator on a compact Riemann surface without boundaries. A Riemann surface can be seen as a gluing of portions of the Hype ...
To do homological algebra with unbounded chain complexes one needs to first find a way of constructing resolutions. Spal-tenstein solved this problem for chain complexes of R-modules by truncating further and further to the left, resolving the pieces, and ...