**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Person# Jérôme Scherer

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related units

Loading

Courses taught by this person

Loading

Related research domains

Loading

Related publications

Loading

People doing similar research

Loading

Related research domains (7)

Complex conjugate

In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a and b

Space

Space is a three-dimensional continuum containing positions and directions. In classical physics, physical space is often conceived in three linear dimensions. Modern physicists usually consider it,

Noetherian ring

In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then t

Related publications (18)

Loading

Loading

Loading

Related units (7)

Courses taught by this person (2)

On étudie des notions de topologie générale: unions et quotients d'espaces topologiques; on approfondit les notions de revêtements et de groupe fondamental,et d'attachements de cellules et on démontre le Théorème de Seifert-van Kampen. Des exemples de surfaces illustrent les techniques de calcul.

We propose an introduction to homotopy theory for topological spaces. We define higher homotopy groups and relate them to homology groups. We introduce (co)fibration sequences, loop spaces, and suspensions. We study long exact sequences. We construct Eilenberg-Mac Lane spaces.

Let h be a connective homology theory. We construct a functorial relative plus construction as a Bousfield localization functor in the category of maps of spaces. It allows us to associate to a pair (X,H), consisting of a connected space X and an hperfect normal subgroup H of the fundamental group π1(X), an h-acyclic map X → XH+ h inducing the quotient by H on the fundamental group. We show that this map is terminal among the h-acyclic maps that kill a subgroup of H. When h is an ordinary homology theory with coefficients in a commutative ring with unit R, this provides a functorial and well-defined counterpart to a construction by cell attachment introduced by Broto, Levi, and Oliver in the spirit of Quillen’s plus construction. We also clarify the necessity to use a strongly R-perfect group H in characteristic zero.

2023Conjugation spaces are topological spaces equipped with an involution such that their fixed points have the same mod 2 cohomology (as a graded vector space, a ring and even an unstable algebra) but with all degrees divided by two, generalizing the classical examples of complex projective spaces under complex conjugation. Spaces which are constructed from unit balls in complex Euclidean spaces are called spherical and are very well understood. Our aim is twofold. We construct 'exotic' conjugation spaces and study the realization question: which spaces can be realized as real loci, i.e., fixed points of conjugation spaces. We identify obstructions and provide examples of spaces and manifolds which cannot be realized as such.

People doing similar research (74)

, , , , , , , , ,

Conjugation spaces are equipped with an involution such that the fixed points have the same mod 2 cohomology (as a graded vector space, a ring, and even an unstable algebra) but with all degrees divided by 2, generalizing the classical examples of complex projective spaces under complex conjugation. Using tools from stable equivariant homotopy theory, we provide a characterization of conjugation spaces in terms of purity. This conceptual viewpoint, compared to the more computational original definition, allows us to recover all known structural properties of conjugation spaces.