A molecular switch is a molecule that can be reversibly shifted between two or more stable states. The molecules may be shifted between the states in response to environmental stimuli, such as changes in pH, light, temperature, an electric current, microenvironment, or in the presence of ions and other ligands. In some cases, a combination of stimuli is required. The oldest forms of synthetic molecular switches are pH indicators, which display distinct colors as a function of pH. Currently synthetic molecular switches are of interest in the field of nanotechnology for application in molecular computers or responsive drug delivery systems. Molecular switches are also important in biology because many biological functions are based on it, for instance allosteric regulation and vision. They are also one of the simplest examples of molecular machines.
In cellular biology, proteins act as intracellular signaling molecules by activating another protein in a signaling pathway. In order to do this, proteins can switch between active and inactive states, thus acting as molecular switches in response to another signal. For example, phosphorylation of proteins can be used to activate or inactivate proteins. The external signal flipping the molecular switch could be a protein kinase, which adds a phosphate group to the protein, or a protein phosphatase, which removes phosphate groups.
The capacity of some compounds to change in function of the pH was known since the sixteenth century. This effect was even known before the development of acid-base theory. Those are found in a wide range of plants like roses, cornflowers, primroses and violets. Robert Boyle was the first person to describe this effect, employing plant juices (in the forms of solution and impregnated paper).
Molecular switches are most commonly used as pH indicators, which are molecules with acidic or basic properties. Their acidic and basic forms have different colors. When an acid or a base is added, the equilibrium between the two forms is displaced.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Living organisms evolve in a physical world: their cells respond to mechanics, electricity and light. In this course, we will describe the behavior and function of cells using physical principles.
Delves into supramolecular chemistry, focusing on molecular machines and motors, exploring design principles and experimental support for controlled motion.
In macromolecular chemistry, a catenane () is a mechanically interlocked molecular architecture consisting of two or more interlocked macrocycles, i.e. a molecule containing two or more intertwined rings. The interlocked rings cannot be separated without breaking the covalent bonds of the macrocycles. They are conceptually related to other mechanically interlocked molecular architectures, such as rotaxanes, molecular knots or molecular Borromean rings.
A rotaxane () is a mechanically interlocked molecular architecture consisting of a dumbbell-shaped molecule which is threaded through a macrocycle (see graphical representation). The two components of a rotaxane are kinetically trapped since the ends of the dumbbell (often called stoppers) are larger than the internal diameter of the ring and prevent dissociation (unthreading) of the components since this would require significant distortion of the covalent bonds.
Supramolecular chemistry refers to the branch of chemistry concerning chemical systems composed of a discrete number of molecules. The strength of the forces responsible for spatial organization of the system range from weak intermolecular forces, electrostatic charge, or hydrogen bonding to strong covalent bonding, provided that the electronic coupling strength remains small relative to the energy parameters of the component.
The reversible isomerism of indolinospirobenzopyrans is perhaps among the most studied phenomena in the field of molecular switches. Although they began to gain attention as early as 70 years ago following the seminal work of Hirshberg and Fischer, who wer ...
WILEY-V C H VERLAG GMBH2023
Photochemistry is a discipline that studies the interaction between light and matter with the scope to induce chemical transformations. The first conjugation between light and chemistry can be dated back to the lifespan of Giacomo Luigi Ciamician, who is c ...
Molecular machines offer many opportunities for the development of responsive materials and introduce autono-mous motion in molecular systems. While basic molecular switches and motors carry out one type of motion upon being exposed to an external stimulus ...