Summary
A molecular switch is a molecule that can be reversibly shifted between two or more stable states. The molecules may be shifted between the states in response to environmental stimuli, such as changes in pH, light, temperature, an electric current, microenvironment, or in the presence of ions and other ligands. In some cases, a combination of stimuli is required. The oldest forms of synthetic molecular switches are pH indicators, which display distinct colors as a function of pH. Currently synthetic molecular switches are of interest in the field of nanotechnology for application in molecular computers or responsive drug delivery systems. Molecular switches are also important in biology because many biological functions are based on it, for instance allosteric regulation and vision. They are also one of the simplest examples of molecular machines. In cellular biology, proteins act as intracellular signaling molecules by activating another protein in a signaling pathway. In order to do this, proteins can switch between active and inactive states, thus acting as molecular switches in response to another signal. For example, phosphorylation of proteins can be used to activate or inactivate proteins. The external signal flipping the molecular switch could be a protein kinase, which adds a phosphate group to the protein, or a protein phosphatase, which removes phosphate groups. The capacity of some compounds to change in function of the pH was known since the sixteenth century. This effect was even known before the development of acid-base theory. Those are found in a wide range of plants like roses, cornflowers, primroses and violets. Robert Boyle was the first person to describe this effect, employing plant juices (in the forms of solution and impregnated paper). Molecular switches are most commonly used as pH indicators, which are molecules with acidic or basic properties. Their acidic and basic forms have different colors. When an acid or a base is added, the equilibrium between the two forms is displaced.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
CH-424: Supramolecular chemistry
The course provides an introduction to supramolecular chemistry. In addition, current trends are discussed using recent publications in this area.
CH-312: Dynamics of biomolecular processes
In this course we will discuss advanced biophysical topics, building on the framework established in the course "Macromolecular structure and interactions". The course is held in English.