Concept

Energy return on investment

In energy economics and ecological energetics, energy return on investment (EROI), also sometimes called energy returned on energy invested (ERoEI), is the ratio of the amount of usable energy (the exergy) delivered from a particular energy resource to the amount of exergy used to obtain that energy resource. Arithmetically the EROI can be defined as: When the EROI of a source of energy is less than or equal to one, that energy source becomes a net "energy sink", and can no longer be used as a source of energy. A related measure, called energy stored on energy invested (ESOEI), is used to analyse storage systems. To be considered viable as a prominent fuel or energy source a fuel or energy must have an EROI ratio of at least 3:1. Ecological economics The energy analysis field of study is credited with being popularized by Charles A. S. Hall, a Systems ecology and biophysical economics professor at the State University of New York. Hall applied the biological methodology, developed at an Ecosystems Marine Biological Laboratory, and then adapted that method to research human industrial civilization. The concept would have its greatest exposure in 1984, with a paper by Hall that appeared on the cover of the journal Science. Cadmium telluride photovoltaics The issue is still subject of numerous studies, and prompting academic argument. That's mainly because the "energy invested" critically depends on technology, methodology, and system boundary assumptions, resulting in a range from a maximum of 2000 kWh/m2 of module area down to a minimum of 300 kWh/m2 with a median value of 585 kWh/m2 according to a meta-study from 2013. Regarding output, it obviously depends on the local insolation, not just the system itself, so assumptions have to be made. Some studies (see below) include in their analysis that photovoltaic produce electricity, while the invested energy may be lower grade primary energy. A 2015 review in Renewable and Sustainable Energy Reviews assessed the energy payback time and EROI of a variety of PV module technologies.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (12)
HUM-123(a): Global issues: energy A
Le cours offre une vision d'ensemble des questions liées à l'énergie: concepts de bases, besoins et ressources, ainsi que les implications pour la société et la politique. L'approche interdisciplinair
CIVIL-428: Engineering geology for geo-energy
Objective is to provide an understanding of the problems in geo-energy projects. Underground as storage medium for carbon dioxide, heat storage and radioactive waste and as energy source like deep geo
AR-202(o): Studio BA4 (Verschuere)
In the early days of the Anthropocene, the concepts of "Nature and Culture" are being revisited by a number of contemporary thinkers. The studio will take this paradigm shift as an opportunity to addr
Show more
Related lectures (29)
Exergy and Thermodynamics
Explores exergy, entropy, and thermodynamic efficiencies in closed and open systems.
Fusion Nuclear: Energy Source of Stars
Explores nuclear fusion as an environmentally friendly, abundant, and sustainable energy source, discussing its advantages, operating principles, and challenges.
Soil Evaporation and Transpiration
Explores factors influencing soil evaporation, plant transpiration, and steady unsaturated flow.
Show more
Related publications (136)

Beyond the average consumer: Mapping the potential of demand-side management among patterns of appliance usage

Claudia Rebeca Binder Signer, Selin Yilmaz, Matteo Barsanti

To support the decarbonisation of the power sector and offset the volatility of a system with high levels of renewables, there is growing interest in residential Demand-Side Management (DSM) solutions. Traditional DSM strategies require consumers to active ...
2024

NBI optimization on SMART and implications for scenario development

Mario Ludovico Podesta, Francesca Maria Poli

The SMall Aspect Ratio Tokamak (SMART) under commissioning at the University of Seville, Spain, aims to explore confinement properties and possible advantages in confinement for compact/spherical tokamaks operating at negative vs. positive triangularity. T ...
Bristol2024

Modeling, design and economics of PEC devices

Alexandre Dominique M. Cattry

Photo-electrochemical (PEC) devices allow for converting solar energy into chemical energy and for the production of energetically dense solar fuels. Light absorption, charge separation and transport, electrochemical reactions, and ionic transport are requ ...
EPFL2024
Show more
Related concepts (10)
Primary energy
Primary energy (PE) is the energy found in nature that has not been subjected to any human engineered conversion process. It encompasses energy contained in raw fuels and other forms of energy, including waste, received as input to a system. Primary energy can be non-renewable or renewable. Primary energy is used in energy statistics in the compilation of energy balances, as well as in the field of energetics. In energetics, a primary energy source (PES) refers to the energy forms required by the energy sector to generate the supply of energy carriers used by human society.
Emergy
Emergy is the amount of energy consumed in direct and indirect transformations to make a product or service. Emergy is a measure of quality differences between different forms of energy. Emergy is an expression of all the energy used in the work processes that generate a product or service in units of one type of energy. Emergy is measured in units of emjoules, a unit referring to the available energy consumed in transformations. Emergy accounts for different forms of energy and resources (e.g.
Growth of photovoltaics
Between 1992 and 2022, the worldwide usage of photovoltaics (PV) increased exponentially. During this period, it evolved from a niche market of small-scale applications to a mainstream electricity source. When solar PV systems were first recognized as a promising renewable energy technology, subsidy programs, such as feed-in tariffs, were implemented by a number of governments in order to provide economic incentives for investments. For several years, growth was mainly driven by Japan and pioneering European countries.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.