In mathematics, the Thom space, Thom complex, or Pontryagin–Thom construction (named after René Thom and Lev Pontryagin) of algebraic topology and differential topology is a topological space associated to a vector bundle, over any paracompact space.
One way to construct this space is as follows. Let
be a rank n real vector bundle over the paracompact space B. Then for each point b in B, the fiber is an -dimensional real vector space. Choose an orthogonal structure on E, a smoothly varying inner product on the fibers; we can do this using partitions of unity. Let be the unit ball bundle with respect to our orthogonal structure, and let be the unit sphere bundle, then the Thom space is the quotient of topological spaces. is a pointed space with the image of in the quotient as basepoint. If B is compact, then is the one-point compactification of E.
For example, if E is the trivial bundle , then and . Writing for B with a disjoint basepoint, is the smash product of and ; that is, the n-th reduced suspension of .
The significance of this construction begins with the following result, which belongs to the subject of cohomology of fiber bundles. (We have stated the result in terms of coefficients to avoid complications arising from orientability; see also Orientation of a vector bundle#Thom space.)
Let be a real vector bundle of rank n. Then there is an isomorphism, now called a Thom isomorphism
for all k greater than or equal to 0, where the right hand side is reduced cohomology.
This theorem was formulated and proved by René Thom in his famous 1952 thesis.
We can interpret the theorem as a global generalization of the suspension isomorphism on local trivializations, because the Thom space of a trivial bundle on B of rank k is isomorphic to the kth suspension of , B with a disjoint point added (cf. #Construction of the Thom space.) This can be more easily seen in the formulation of the theorem that does not make reference to Thom space:
Let be a ring and be an oriented real vector bundle of rank n.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle of a smooth manifold, it generalizes the classical notion of Euler characteristic. It is named after Leonhard Euler because of this. Throughout this article is an oriented, real vector bundle of rank over a base space . The Euler class is an element of the integral cohomology group constructed as follows.
In mathematics, transversality is a notion that describes how spaces can intersect; transversality can be seen as the "opposite" of tangency, and plays a role in general position. It formalizes the idea of a generic intersection in differential topology. It is defined by considering the linearizations of the intersecting spaces at the points of intersection. Two submanifolds of a given finite-dimensional smooth manifold are said to intersect transversally if at every point of intersection, their separate tangent spaces at that point together generate the tangent space of the ambient manifold at that point.
In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by . Milnor called this technique surgery, while Andrew Wallace called it spherical modification. The "surgery" on a differentiable manifold M of dimension , could be described as removing an imbedded sphere of dimension p from M. Originally developed for differentiable (or, smooth) manifolds, surgery techniques also apply to piecewise linear (PL-) and topological manifolds.
Let eta be a Real bundle, in the sense of Atiyah, over a space X. This is a complex vector bundle together with an involution which is compatible with complex conjugation. We use the fact that BU has a canonical structure of a conjugation space, as defined ...
Belgian Mathematical Soc Triomphe2013
The cotangent complex of a map of commutative rings is a central object in deformation theory. Since the 1990s, it has been generalized to the homotopical setting of E-infinity-ring spectra in various ways. In this work we first establish, in the context o ...
Twisted topological Hochschild homology of Cn-equivariant spectra was introduced by Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and Mandell, building on the work of Hill, Hopkins, and Ravenel on norms in equivariant homotopy theory. In this paper we intr ...