In mathematics, the Thom space, Thom complex, or Pontryagin–Thom construction (named after René Thom and Lev Pontryagin) of algebraic topology and differential topology is a topological space associated to a vector bundle, over any paracompact space.
One way to construct this space is as follows. Let
be a rank n real vector bundle over the paracompact space B. Then for each point b in B, the fiber is an -dimensional real vector space. Choose an orthogonal structure on E, a smoothly varying inner product on the fibers; we can do this using partitions of unity. Let be the unit ball bundle with respect to our orthogonal structure, and let be the unit sphere bundle, then the Thom space is the quotient of topological spaces. is a pointed space with the image of in the quotient as basepoint. If B is compact, then is the one-point compactification of E.
For example, if E is the trivial bundle , then and . Writing for B with a disjoint basepoint, is the smash product of and ; that is, the n-th reduced suspension of .
The significance of this construction begins with the following result, which belongs to the subject of cohomology of fiber bundles. (We have stated the result in terms of coefficients to avoid complications arising from orientability; see also Orientation of a vector bundle#Thom space.)
Let be a real vector bundle of rank n. Then there is an isomorphism, now called a Thom isomorphism
for all k greater than or equal to 0, where the right hand side is reduced cohomology.
This theorem was formulated and proved by René Thom in his famous 1952 thesis.
We can interpret the theorem as a global generalization of the suspension isomorphism on local trivializations, because the Thom space of a trivial bundle on B of rank k is isomorphic to the kth suspension of , B with a disjoint point added (cf. #Construction of the Thom space.) This can be more easily seen in the formulation of the theorem that does not make reference to Thom space:
Let be a ring and be an oriented real vector bundle of rank n.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En topologie algébrique, la classe d’Euler est une classe caractéristique d'un fibré vectoriel réel orienté. Elle mesure l’obstruction à trouver une section d’un fibré qui ne s’annule pas. Cette notion trouve son origine dans la théorie de l'homologie. Soit ξ un fibré vectoriel réel orienté de rang sur une variété compacte orientée de dimension . Une section générique de ξ est transverse à la section nulle. Par conséquent, le lieu de ses zéros est une sous-variété compacte sans bord orientée de dimension -, elle possède une classe d’homologie [] qui ne dépend pas du choix de la section.
En algèbre linéaire et en géométrie différentielle, la propriété de transversalité est un qualificatif pour l'intersection de sous-espaces ou de sous-variétés. Elle est en quelque sorte l'opposé de la notion de tangente. Deux sous-espaces vectoriels , d'un espace vectoriel sont dits transverses quand . Cette condition peut être réécrite, le cas échéant, en termes de codimension : Deux sous-espaces affines , d'un espace affine sont dits , c'est-à-dire si Deux sous-variétés et d'une variété différentielle sont dites transverses lorsque, pour tout point de , les espaces tangents et sont transverses dans l'espace tangent , c'est-à-dire si Dans la suite, désignent les dimensions respectives de .
En mathématiques, et particulièrement en topologie géométrique, la chirurgie est une technique, introduite en 1961 par John Milnor, permettant de construire une variété à partir d'une autre de manière « contrôlée ». On parle de chirurgie parce que cela consiste à « couper » une partie de la première variété et à la remplacer par une partie d'une autre variété, en identifiant les frontières ; ces transformations sont étroitement liées à la notion de décomposition en anses.
Let eta be a Real bundle, in the sense of Atiyah, over a space X. This is a complex vector bundle together with an involution which is compatible with complex conjugation. We use the fact that BU has a canonical structure of a conjugation space, as defined ...
Belgian Mathematical Soc Triomphe2013
,
Twisted topological Hochschild homology of Cn-equivariant spectra was introduced by Angeltveit, Blumberg, Gerhardt, Hill, Lawson, and Mandell, building on the work of Hill, Hopkins, and Ravenel on norms in equivariant homotopy theory. In this paper we intr ...
The cotangent complex of a map of commutative rings is a central object in deformation theory. Since the 1990s, it has been generalized to the homotopical setting of E-infinity-ring spectra in various ways. In this work we first establish, in the context o ...