Geothermal heating is the direct use of geothermal energy for some heating applications. Humans have taken advantage of geothermal heat this way since the Paleolithic era. Approximately seventy countries made direct use of a total of 270 PJ of geothermal heating in 2004. As of 2007, 28 GW of geothermal heating capacity is installed around the world, satisfying 0.07% of global primary energy consumption. Thermal efficiency is high since no energy conversion is needed, but capacity factors tend to be low (around 20%) since the heat is mostly needed in the winter.
Geothermal energy originates from the heat retained within the Earth since the original formation of the planet, from radioactive decay of minerals, and from solar energy absorbed at the surface. Most high temperature geothermal heat is harvested in regions close to tectonic plate boundaries where volcanic activity rises close to the surface of the Earth. In these areas, ground and groundwater can be found with temperatures higher than the target temperature of the application. However, even cold ground contains heat. Below , the undisturbed ground temperature is consistently at the mean annual air temperature, and this heat can be extracted with a ground source heat pump.
There are a wide variety of applications for cheap geothermal heat including heating of houses, greenhouses, bathing and swimming or industrial uses. Most applications use geothermal in the form of hot fluids between 50 °C (122 °F) and 150 °C (302 °F). The suitable temperature varies for the different applications. For direct use of geothermal heat, the temperature range for the agricultural sector lies between 25 °C (77 °F) and 90 °C (194 °F), for space heating lies between 50 °C (122 °F) to 100 °C (212 °F). Heat pipes extend the temperature range down to 5 °C (41 °F) as they extract and "amplify" the heat. Geothermal heat exceeding 150 °C (302 °F) is typically used for geothermal power generation.
In 2004 more than half of direct geothermal heat was used for space heating, and a third was used for spas.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Energy geostructures are an innovative technology that couple the structural role of foundations and the heating/cooling
role of geothermal heat exchangers. The goal of the course is to provide a comp
This course provides an overview of the geothermal energy sector, spanning core topics of geology, thermodynamics, hydrogeology, and geochemistry and tackles questions of geothermal resource explorati
Ce cours donne aux étudiant-e-s les connaissances de base nécessaires pour comprendre les dimensions juridiques de leur activité professionnelle concernant l'aménagement du territoire et la protection
A ground source heat pump (also geothermal heat pump) is a heating/cooling system for buildings that uses a type of heat pump to transfer heat to or from the ground, taking advantage of the relative constancy of temperatures of the earth through the seasons. Ground source heat pumps (GSHPs) – or geothermal heat pumps (GHP) as they are commonly termed in North America – are among the most energy-efficient technologies for providing HVAC and water heating, using far less energy than can be achieved by burning a fuel in a boiler/furnace or by use of resistive electric heaters.
District heating (also known as heat networks or teleheating) is a system for distributing heat generated in a centralized location through a system of insulated pipes for residential and commercial heating requirements such as space heating and water heating. The heat is often obtained from a cogeneration plant burning fossil fuels or biomass, but heat-only boiler stations, geothermal heating, heat pumps and central solar heating are also used, as well as heat waste from factories and nuclear power electricity generation.
Geothermal power is electrical power generated from geothermal energy. Technologies in use include dry steam power stations, flash steam power stations and binary cycle power stations. Geothermal electricity generation is currently used in 26 countries, while geothermal heating is in use in 70 countries. As of 2019, worldwide geothermal power capacity amounts to 15.4 gigawatts (GW), of which 23.9 percent or 3.68 GW are installed in the United States.
Between the ideal and reality lies the decisive world of the performance gap. This project is conducted within the framework of a Master Thesis at the Industrial Processes and Energy Systems Engineering (IPESE) laboratory of Ecole Polytechnique F´ed´erale ...
Water vitrifies if cooled at rates above 3 × 105 K/s. In contrast, when the resulting amorphous ice is flash heated, crystallization occurs even at a more than 10 times higher heating rate, as we have recently shown. This may present an issue for microseco ...
2024
, , , ,
In this work, a tool to design district heating networks (DHN) is presented and applied to the city of Lausanne as a case study. The evaluation of the buildings’ heat/cooling demand is performed using a Geographic Information System (GIS) database, built f ...