Summary
The LHCb (Large Hadron Collider beauty) experiment is a particle physics detector experiment collecting data at the Large Hadron Collider at CERN. LHCb is a specialized b-physics experiment, designed primarily to measure the parameters of CP violation in the interactions of b-hadrons (heavy particles containing a bottom quark). Such studies can help to explain the matter-antimatter asymmetry of the Universe. The detector is also able to perform measurements of production cross sections, exotic hadron spectroscopy, charm physics and electroweak physics in the forward region. The LHCb collaboration, who built, operate and analyse data from the experiment, is composed of approximately 1260 people from 74 scientific institutes, representing 16 countries. Chris Parkes succeeded on July 1, 2020 as spokesperson for the collaboration from Giovanni Passaleva (spokesperson 2017-2020). The experiment is located at point 8 on the LHC tunnel close to Ferney-Voltaire, France just over the border from Geneva. The (small) MoEDAL experiment shares the same cavern. The experiment has wide physics program covering many important aspects of heavy flavour (both beauty and charm), electroweak and quantum chromodynamics (QCD) physics. Six key measurements have been identified involving B mesons. These are described in a roadmap document that formed the core physics programme for the first high energy LHC running in 2010–2012. They include: Measuring the branching ratio of the rare Bs → μ+ μ− decay. Measuring the forward-backward asymmetry of the muon pair in the flavour-changing neutral current Bd → K* μ+ μ− decay. Such a flavour changing neutral current cannot occur at tree-level in the Standard Model of Particle Physics, and only occurs through box and loop Feynman diagrams; properties of the decay can be strongly modified by new physics. Measuring the CP violating phase in the decay Bs → J/ψ φ, caused by interference between the decays with and without Bs oscillations.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.