Summary
An anti-aliasing filter (AAF) is a filter used before a signal sampler to restrict the bandwidth of a signal to satisfy the Nyquist–Shannon sampling theorem over the band of interest. Since the theorem states that unambiguous reconstruction of the signal from its samples is possible when the power of frequencies above the Nyquist frequency is zero, a brick wall filter is an idealized but impractical AAF. A practical AAF makes a trade off between reduced bandwidth and increased aliasing. A practical anti-aliasing filter will typically permit some aliasing to occur or attenuate or otherwise distort some in-band frequencies close to the Nyquist limit. For this reason, many practical systems sample higher than would be theoretically required by a perfect AAF in order to ensure that all frequencies of interest can be reconstructed, a practice called oversampling. Spatial anti-aliasing In the case of optical image sampling, as by s in digital cameras, the anti-aliasing filter is also known as an optical low-pass filter (OLPF), blur filter, or AA filter. The mathematics of sampling in two spatial dimensions is similar to the mathematics of time-domain sampling, but the filter implementation technologies are different. The typical implementation in digital cameras is two layers of birefringent material such as lithium niobate, which spreads each optical point into a cluster of four points. The choice of spot separation for such a filter involves a tradeoff among sharpness, aliasing, and fill factor (the ratio of the active refracting area of a microlens array to the total contiguous area occupied by the array). In a monochrome or three-CCD or Foveon X3 camera, the microlens array alone, if near 100% effective, can provide a significant anti-aliasing function, while in color filter array (e.g. Bayer filter) cameras, an additional filter is generally needed to reduce aliasing to an acceptable level. Alternative implementations include the Pentax K-3's anti-aliasing filter, which applies small vibrations to the sensor element.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.