Summary
In mathematics, a geometric algebra (also known as a real Clifford algebra) is an extension of elementary algebra to work with geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the geometric product. Multiplication of vectors results in higher-dimensional objects called multivectors. Compared to other formalisms for manipulating geometric objects, geometric algebra is noteworthy for supporting vector division and addition of objects of different dimensions. The geometric product was first briefly mentioned by Hermann Grassmann, who was chiefly interested in developing the closely related exterior algebra. In 1878, William Kingdon Clifford greatly expanded on Grassmann's work to form what are now usually called Clifford algebras in his honor (although Clifford himself chose to call them "geometric algebras"). Clifford defined the Clifford algebra and its product as a unification of the Grassmann algebra and Hamilton's quaternion algebra. Adding the dual of the Grassmann exterior product (the "meet") allows the use of the Grassmann–Cayley algebra, and a conformal version of the latter together with a conformal Clifford algebra yields a conformal geometric algebra (CGA) providing a framework for classical geometries. In practice, these and several derived operations allow a correspondence of elements, subspaces and operations of the algebra with geometric interpretations. For several decades, geometric algebras went somewhat ignored, greatly eclipsed by the vector calculus then newly developed to describe electromagnetism. The term "geometric algebra" was repopularized in the 1960s by Hestenes, who advocated its importance to relativistic physics. The scalars and vectors have their usual interpretation, and make up distinct subspaces of a geometric algebra. Bivectors provide a more natural representation of the pseudovector quantities in vector algebra such as oriented area, oriented angle of rotation, torque, angular momentum and the electromagnetic field.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (31)
MATH-123(b): Geometry
The course provides an introduction to the study of curves and surfaces in Euclidean spaces. We will learn how we can apply ideas from differential and integral calculus and linear algebra in order to
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
ENV-341: Remote sensing
Ce cours a pour objectif de familiariser les étudiants avec les principaux concepts, instruments et techniques de la télédétection environnementale. Les interactions ondes/matière, les différents type
Show more
Related publications (165)