Concept

Algèbre géométrique (structure)

Résumé
Une algèbre géométrique est, en mathématiques, une structure algébrique, similaire à une algèbre de Clifford réelle, mais dotée d'une interprétation géométrique mise au point par David Hestenes, reprenant les travaux de Hermann Grassmann et William Kingdon Clifford (le terme est aussi utilisé dans un sens plus général pour décrire l'étude et l'application de ces algèbres : l'algèbre géométrique est l'étude des algèbres géométriques). Le but avoué de ce physicien théoricien et pédagogue est de fonder un langage propre à unifier les manipulations symboliques en physique, dont les nombreuses branches pratiquent aujourd'hui, pour des raisons historiques, des formalismes différents (tenseurs, matrices, torseurs, analyse vectorielle, utilisation de nombres complexes, spineurs, quaternions, formes différentielles...). Le nom choisi par David Hestenes (geometric algebra) est celui que Clifford voulait donner à son algèbre. L'algèbre géométrique se veut utile dans les problèmes de physique qui impliquent des rotations, des phases ou des nombres imaginaires. Ses partisans disent qu'elle fournit une description plus compacte et intuitive de la mécanique quantique et classique, de la théorie électromagnétique et de la relativité. Les applications actuelles de l'algèbre géométrique incluent la vision par ordinateur, la biomécanique ainsi que la robotique et la dynamique des vols spatiaux. En 1843 William Rowan Hamilton découvre les quaternions qu'il interprète géométriquement comme des vecteurs (à tort). Un an plus tard, Hermann Günther Grassmann introduit le produit intérieur et le produit extérieur qui permettent la construction d'algèbres opérant sur des objets géométriques. Enfin, en 1873 William Kingdon Clifford parvient à intégrer les résultats d'Hamilton et ceux de Grassmann dans une première formulation de l'algèbre géométrique. La découverte de Clifford passe inaperçue, et les physiciens de la fin du ne connaissant pas cet outil mathématique commencent à employer un autre système connu sous le nom de « calcul vectoriel ».
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (1)
Concepts associés (107)
Produit vectoriel
En mathématiques, et plus précisément en géométrie, le produit vectoriel est une opération vectorielle effectuée dans les espaces euclidiens orientés de dimension 3. Le formalisme utilisé actuellement est apparu en 1881 dans un manuel d'analyse vectorielle écrit par Josiah Willard Gibbs pour ses étudiants en physique. Les travaux de Hermann Günther Grassmann et William Rowan Hamilton sont à l'origine du produit vectoriel défini par Gibbs.
Algèbre géométrique (structure)
Une algèbre géométrique est, en mathématiques, une structure algébrique, similaire à une algèbre de Clifford réelle, mais dotée d'une interprétation géométrique mise au point par David Hestenes, reprenant les travaux de Hermann Grassmann et William Kingdon Clifford (le terme est aussi utilisé dans un sens plus général pour décrire l'étude et l'application de ces algèbres : l'algèbre géométrique est l'étude des algèbres géométriques).
Quaternion
vignette|Plaque commémorative de la naissance des quaternions sur le pont de Broom (Dublin). En mathématiques, un quaternion est un nombre dans un sens généralisé. Les quaternions englobent les nombres réels et complexes dans un système de nombres plus vastes où la multiplication n'est cette fois-ci plus une loi commutative. Les quaternions furent introduits par le mathématicien irlandais William Rowan Hamilton en 1843. Ils trouvent aujourd'hui des applications en mathématiques, en physique, en informatique et en sciences de l'ingénieur.
Afficher plus
Cours associés (28)
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
MATH-432: Probability theory
The course is based on Durrett's text book Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
MATH-319: Lie Algebras
On introduit les algèbres de Lie semisimples de dimension finie sur les nombres complexes et démontre le théorème de classification de celles-ci.
Afficher plus
Séances de cours associées (362)
Algèbre élémentaire: ensembles numériques
Explore les concepts d'algèbre élémentaire liés aux ensembles numériques et aux nombres premiers, y compris la factorisation et les propriétés uniques.
Transformations géométriques : réflexions et traductions
Explore les réflexions et les traductions dans les transformations géométriques, démontrant leur stabilité et leurs applications pratiques.
Introduction de la ROTORÉFLEXION
Introduit la réflexion du rotor, une transformation impliquant des réflexions et des rotations, avec des applications géométriques pratiques.
Afficher plus
MOOCs associés (9)
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algèbre Linéaire (Partie 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Afficher plus