Concept

Algèbre géométrique (structure)

Résumé
Une algèbre géométrique est, en mathématiques, une structure algébrique, similaire à une algèbre de Clifford réelle, mais dotée d'une interprétation géométrique mise au point par David Hestenes, reprenant les travaux de Hermann Grassmann et William Kingdon Clifford (le terme est aussi utilisé dans un sens plus général pour décrire l'étude et l'application de ces algèbres : l'algèbre géométrique est l'étude des algèbres géométriques). Le but avoué de ce physicien théoricien et pédagogue est de fonder un langage propre à unifier les manipulations symboliques en physique, dont les nombreuses branches pratiquent aujourd'hui, pour des raisons historiques, des formalismes différents (tenseurs, matrices, torseurs, analyse vectorielle, utilisation de nombres complexes, spineurs, quaternions, formes différentielles…). Le nom choisi par David Hestenes (geometric algebra) est celui que Clifford voulait donner à son algèbre. L'algèbre géométrique se veut utile dans les problèmes de physique qui
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement