Summary
In digital signal processing, upsampling, expansion, and interpolation are terms associated with the process of resampling in a multi-rate digital signal processing system. Upsampling can be synonymous with expansion, or it can describe an entire process of expansion and filtering (interpolation). When upsampling is performed on a sequence of samples of a signal or other continuous function, it produces an approximation of the sequence that would have been obtained by sampling the signal at a higher rate (or density, as in the case of a photograph). For example, if compact disc audio at 44,100 samples/second is upsampled by a factor of 5/4, the resulting sample-rate is 55,125. Rate increase by an integer factor L can be explained as a 2-step process, with an equivalent implementation that is more efficient: Expansion: Create a sequence, comprising the original samples, separated by L − 1 zeros. A notation for this operation is: Interpolation: Smooth out the discontinuities with a lowpass filter, which replaces the zeros. In this application, the filter is called an interpolation filter, and its design is discussed below. When the interpolation filter is an FIR type, its efficiency can be improved, because the zeros contribute nothing to its dot product calculations. It is an easy matter to omit them from both the data stream and the calculations. The calculation performed by a multirate interpolating FIR filter for each output sample is a dot product: where the h[•] sequence is the impulse response of the interpolation filter, and K is the largest value of k for which h[j + kL] is non-zero. In the case L = 2, h[•] can be designed as a half-band filter, where almost half of the coefficients are zero and need not be included in the dot products. Impulse response coefficients taken at intervals of L form a subsequence, and there are L such subsequences (called phases) multiplexed together. Each of L phases of the impulse response is filtering the same sequential values of the x[•] data stream and producing one of L sequential output values.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
COM-303: Signal processing for communications
Students learn digital signal processing theory, including discrete time, Fourier analysis, filter design, adaptive filtering, sampling, interpolation and quantization; they are introduced to image pr
COM-514: Mathematical foundations of signal processing
A theoretical and computational framework for signal sampling and approximation is presented from an intuitive geometric point of view. This lecture covers both mathematical and practical aspects of
Related lectures (12)
Discrete Signals and Systems II: Fourier Transform Properties
Explores the properties of the discrete Fourier transform and its applications in signal processing, emphasizing DFT reversal and DTFT resampling.
Discrete Signals & Fourier Transform
Explores discrete signals, Fourier transform, modulation, convolution, DFT properties, and signal periodicity.
Signal Acquisition: Stochastic Modeling
Introduces signal acquisition, GMWM for sensor calibration, and the importance of accurate parameter matching.
Show more
Related publications (25)

Robust Data-Driven Controller Design with Finite Frequency Samples

Alireza Karimi, Philippe Louis Schuchert

Modern control synthesis methods rely on accurate models to derive a performant controller. Obtaining a good model is often a costly step, and has led to a renewed interest in data-driven synthesis methods. Frequency-response-based synthesis methods have b ...
2024

pyFFS: A Python Library for Fast Fourier Series Computation and Interpolation with GPU Acceleration

Martin Vetterli, Paul Hurley, Eric Bezzam, Sepand Kashani, Matthieu Martin Jean-André Simeoni

Fourier transforms are an often necessary component in many computational tasks, and can be computed efficiently through the fast Fourier transform (FFT) algorithm. However, many applications involve an underlying continuous signal, and a more natural choi ...
2022

Deep Image Restoration: Between Data Fidelity and Learned Priors

Majed El Helou

Image restoration reconstructs, as faithfully as possible, an original image from a potentially degraded version of it. Image degradations can be of various types, for instance haze, unwanted reflections, optical or spectral aberrations, or other physicall ...
EPFL2021
Show more
Related concepts (3)
Sample-rate conversion
Sample-rate conversion, sampling-frequency conversion or resampling is the process of changing the sampling rate or sampling frequency of a discrete signal to obtain a new discrete representation of the underlying continuous signal. Application areas include and audio/visual systems, where different sampling rates may be used for engineering, economic, or historical reasons. For example, Compact Disc Digital Audio and Digital Audio Tape systems use different sampling rates, and American television, European television, and movies all use different frame rates.
Sampling (signal processing)
In signal processing, sampling is the reduction of a continuous-time signal to a discrete-time signal. A common example is the conversion of a sound wave to a sequence of "samples". A sample is a value of the signal at a point in time and/or space; this definition differs from the term's usage in statistics, which refers to a set of such values. A sampler is a subsystem or operation that extracts samples from a continuous signal. A theoretical ideal sampler produces samples equivalent to the instantaneous value of the continuous signal at the desired points.
Digital signal processing
Digital signal processing (DSP) is the use of digital processing, such as by computers or more specialized digital signal processors, to perform a wide variety of signal processing operations. The digital signals processed in this manner are a sequence of numbers that represent samples of a continuous variable in a domain such as time, space, or frequency. In digital electronics, a digital signal is represented as a pulse train, which is typically generated by the switching of a transistor.
Related MOOCs (4)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Show more