In digital signal processing, upsampling, expansion, and interpolation are terms associated with the process of resampling in a multi-rate digital signal processing system. Upsampling can be synonymous with expansion, or it can describe an entire process of expansion and filtering (interpolation). When upsampling is performed on a sequence of samples of a signal or other continuous function, it produces an approximation of the sequence that would have been obtained by sampling the signal at a higher rate (or density, as in the case of a photograph). For example, if compact disc audio at 44,100 samples/second is upsampled by a factor of 5/4, the resulting sample-rate is 55,125. Rate increase by an integer factor L can be explained as a 2-step process, with an equivalent implementation that is more efficient: Expansion: Create a sequence, comprising the original samples, separated by L − 1 zeros. A notation for this operation is: Interpolation: Smooth out the discontinuities with a lowpass filter, which replaces the zeros. In this application, the filter is called an interpolation filter, and its design is discussed below. When the interpolation filter is an FIR type, its efficiency can be improved, because the zeros contribute nothing to its dot product calculations. It is an easy matter to omit them from both the data stream and the calculations. The calculation performed by a multirate interpolating FIR filter for each output sample is a dot product: where the h[•] sequence is the impulse response of the interpolation filter, and K is the largest value of k for which h[j + kL] is non-zero. In the case L = 2, h[•] can be designed as a half-band filter, where almost half of the coefficients are zero and need not be included in the dot products. Impulse response coefficients taken at intervals of L form a subsequence, and there are L such subsequences (called phases) multiplexed together. Each of L phases of the impulse response is filtering the same sequential values of the x[•] data stream and producing one of L sequential output values.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
COM-303: Signal processing for communications
Students learn digital signal processing theory, including discrete time, Fourier analysis, filter design, adaptive filtering, sampling, interpolation and quantization; they are introduced to image pr
COM-514: Mathematical foundations of signal processing
A theoretical and computational framework for signal sampling and approximation is presented from an intuitive geometric point of view. This lecture covers both mathematical and practical aspects of
Séances de cours associées (11)
Signaux et systèmes discrets II: propriétés de la transformée de Fourier
Explore les propriétés de la transformée de Fourier discrète et ses applications dans le traitement du signal, en mettant l'accent sur l'inversion DFT et le rééchantillonnage DTFT.
Signaux discrets et transformée de Fourier
Explore les signaux discrets, la transformée de Fourier, la modulation, la convolution, les propriétés DFT et la périodicité du signal.
Acquisition de signaux: Modélisation stochastique
Introduit l'acquisition de signal, GMWM pour l'étalonnage des capteurs, et l'importance d'une correspondance précise des paramètres.
Afficher plus
Publications associées (25)

Robust Data-Driven Controller Design with Finite Frequency Samples

Alireza Karimi, Philippe Louis Schuchert

Modern control synthesis methods rely on accurate models to derive a performant controller. Obtaining a good model is often a costly step, and has led to a renewed interest in data-driven synthesis methods. Frequency-response-based synthesis methods have b ...
2024

pyFFS: A Python Library for Fast Fourier Series Computation and Interpolation with GPU Acceleration

Martin Vetterli, Paul Hurley, Eric Bezzam, Sepand Kashani, Matthieu Martin Jean-André Simeoni

Fourier transforms are an often necessary component in many computational tasks, and can be computed efficiently through the fast Fourier transform (FFT) algorithm. However, many applications involve an underlying continuous signal, and a more natural choi ...
2022

Deep Image Restoration: Between Data Fidelity and Learned Priors

Majed El Helou

Image restoration reconstructs, as faithfully as possible, an original image from a potentially degraded version of it. Image degradations can be of various types, for instance haze, unwanted reflections, optical or spectral aberrations, or other physicall ...
EPFL2021
Afficher plus
Concepts associés (3)
Sample-rate conversion
Sample-rate conversion, sampling-frequency conversion or resampling is the process of changing the sampling rate or sampling frequency of a discrete signal to obtain a new discrete representation of the underlying continuous signal. Application areas include and audio/visual systems, where different sampling rates may be used for engineering, economic, or historical reasons. For example, Compact Disc Digital Audio and Digital Audio Tape systems use different sampling rates, and American television, European television, and movies all use different frame rates.
Échantillonnage (signal)
L'échantillonnage consiste à prélever les valeurs d'un signal à intervalles définis, généralement réguliers. Il produit une suite de valeurs discrètes nommées échantillons. L'application la plus courante de l'échantillonnage est aujourd'hui la numérisation d'un signal variant dans le temps, mais son principe est ancien. Depuis plusieurs siècles, on surveille les mouvements lents en inscrivant, périodiquement, les valeurs relevées dans un registre : ainsi des hauteurs d'eau des marées ou des rivières, de la quantité de pluie.
Traitement numérique du signal
Le traitement numérique du signal étudie les techniques de traitement (filtrage, compression, etc), d'analyse et d'interprétation des signaux numérisés. À la différence du traitement des signaux analogiques qui est réalisé par des dispositifs en électronique analogique, le traitement des signaux numériques est réalisé par des machines numériques (des ordinateurs ou des circuits dédiés). Ces machines numériques donnent accès à des algorithmes puissants, tel le calcul de la transformée de Fourier.
MOOCs associés (4)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.