A substellar object, sometimes called a substar, is an astronomical object the mass of which is smaller than the smallest mass at which hydrogen fusion can be sustained (approximately 0.08 solar masses). This definition includes brown dwarfs and former stars similar to EF Eridani B, and can also include objects of planetary mass, regardless of their formation mechanism and whether or not they are associated with a primary star.
Assuming that a substellar object has a composition similar to the Sun's and at least the mass of Jupiter (approximately 10−3 solar masses), its radius will be comparable to that of Jupiter (approximately 0.1 solar radii) regardless of the mass of the substellar object (brown dwarfs are less than 75 Jupiter masses). This is because the center of such a substellar object at the top range of the mass (just below the hydrogen-burning limit) is quite degenerate, with a density of ≈103 g/cm3, but this degeneracy lessens with decreasing mass until, at the mass of Jupiter, a substellar object has a central density less than 10 g/cm3. The density decrease balances the mass decrease, keeping the radius approximately constant.
Substellar objects like brown dwarfs do not have enough mass to fuse hydrogen and helium, hence do not undergo the usual stellar evolution that limits the lifetime of stars.
A substellar object with a mass just below the hydrogen-fusing limit may ignite hydrogen fusion temporarily at its center. Although this will provide some energy, it will not be enough to overcome the object's ongoing gravitational contraction. Likewise, although an object with mass above approximately 0.013 solar masses will be able to fuse deuterium for a time, this source of energy will be exhausted in approximately 106 to 108 years (1100 million years). Apart from these sources, the radiation of an isolated substellar object comes only from the release of its gravitational potential energy, which causes it to gradually cool and shrink.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This glossary of astronomy is a list of definitions of terms and concepts relevant to astronomy and cosmology, their sub-disciplines, and related fields. Astronomy is concerned with the study of celestial objects and phenomena that originate outside the atmosphere of Earth. The field of astronomy features an extensive vocabulary and a significant amount of jargon.
A black dwarf is a theoretical stellar remnant, specifically a white dwarf that has cooled sufficiently to no longer emit significant heat or light. Because the time required for a white dwarf to reach this state is calculated to be longer than the current age of the universe (13.8 billion years), no black dwarfs are expected to exist in the universe at the present time. The temperature of the coolest white dwarfs is one observational limit on the universe's age.
Brown dwarfs (also called failed stars) are substellar objects that are not massive enough to sustain nuclear fusion of ordinary hydrogen (1H) into helium in their cores, unlike a main-sequence star. Instead, they have a mass between the most massive gas giant planets and the least massive stars, approximately 13 to 80 times that of Jupiter (). However, they can fuse deuterium (2H) and the most massive ones (> ) can fuse lithium (7Li).
We report on HD 213258, an Ap star that we recently identified as presenting a unique combination of rare, remarkable properties. Our study of this star is based on ESPaDOnS Stokes I and V data obtained at seven epochs spanning a time interval slightly sho ...
EDP SCIENCES S A2023
,
The visual appearance of any colorized object is usually determined by the spectral absorption of either pigments or dyes. One can however also colorize objects with structural colors that typically have an iridescent appearance, as seen on many beetles. T ...
In this paper, we propose a novel center-based decoupled point cloud registration framework for robust 6D object pose estimation in real-world scenarios. Our method decouples the translation from the entire transformation by predicting the object center an ...