Concept

Black dwarf

Summary
A black dwarf is a theoretical stellar remnant, specifically a white dwarf that has cooled sufficiently to no longer emit significant heat or light. Because the time required for a white dwarf to reach this state is calculated to be longer than the current age of the universe (13.8 billion years), no black dwarfs are expected to exist in the universe at the present time. The temperature of the coolest white dwarfs is one observational limit on the universe's age. The name "black dwarf" has also been applied to hypothetical late-stage cooled brown dwarfs – substellar objects with insufficient mass (less than approximately 0.07 ) to maintain hydrogen-burning nuclear fusion. A white dwarf is what remains of a main sequence star of low or medium mass (below approximately 9 to 10 solar masses ()) after it has either expelled or fused all the elements for which it has sufficient temperature to fuse. What is left is then a dense sphere of electron-degenerate matter that cools slowly by thermal radiation, eventually becoming a black dwarf. If black dwarfs were to exist, they would be challenging to detect because, by definition, they would emit very little radiation. They would, however, be detectable through their gravitational influence. Various white dwarfs cooled below (equivalent to M0 spectral class) were found in 2012 by astronomers using MDM Observatory's 2.4 meter telescope. They are estimated to be 11 to 12 billion years old. Because the far-future evolution of stars depends on physical questions which are poorly understood, such as the nature of dark matter and the possibility and rate of proton decay (which is yet to be proven to exist), it is not known precisely how long it will take white dwarfs to cool to blackness. Barrow and Tipler estimate that it would take 1015 years for a white dwarf to cool to ; however, if weakly interacting massive particles (WIMPs) exist, interactions with these particles may keep some white dwarfs much warmer than this for approximately 1025 years.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood