Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In radio, multiple-input and multiple-output (MIMO) (ˈmaɪmoʊ,_ˈmiːmoʊ) is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n (Wi-Fi 4), IEEE 802.11ac (Wi-Fi 5), HSPA+ (3G), WiMAX, and Long Term Evolution (LTE). More recently, MIMO has been applied to power-line communication for three-wire installations as part of the ITU G.hn standard and of the HomePlug AV2 specification. At one time, in wireless the term "MIMO" referred to the use of multiple antennas at the transmitter and the receiver. In modern usage, "MIMO" specifically refers to a class of techniques for sending and receiving more than one data signal simultaneously over the same radio channel by exploiting multipath propagation. Additionally, modern MIMO usage often refers to multiple data signals sent to different receivers (with one or more receive antennas) though this is more accurately termed multi-user multiple-input single-output (MU-MISO). MIMO is often traced back to 1970s research papers concerning multi-channel digital transmission systems and interference (crosstalk) between wire pairs in a cable bundle: AR Kaye and DA George (1970), Branderburg and Wyner (1974), and W. van Etten (1975, 1976). Although these are not examples of exploiting multipath propagation to send multiple information streams, some of the mathematical techniques for dealing with mutual interference proved useful to MIMO development. In the mid-1980s Jack Salz at Bell Laboratories took this research a step further, investigating multi-user systems operating over "mutually cross-coupled linear networks with additive noise sources" such as time-division multiplexing and dually-polarized radio systems. Methods were developed to improve the performance of cellular radio networks and enable more aggressive frequency reuse in the early 1990s.
Anja Skrivervik, Abolfazl Azari