Summary
Hail is a form of solid precipitation. It is distinct from ice pellets (American English "sleet"), though the two are often confused. It consists of balls or irregular lumps of ice, each of which is called a hailstone. Ice pellets generally fall in cold weather, while hail growth is greatly inhibited during low surface temperatures. Unlike other forms of water ice precipitation, such as graupel (which is made of rime ice), ice pellets (which are smaller and translucent), and snow (which consists of tiny, delicately crystalline flakes or needles), hailstones usually measure between and in diameter. The METAR reporting code for hail or greater is GR, while smaller hailstones and graupel are coded GS. Hail is possible within most thunderstorms (as it is produced by cumulonimbus), as well as within of the parent storm. Hail formation requires environments of strong, upward motion of air within the parent thunderstorm (similar to tornadoes) and lowered heights of the freezing level. In the mid-latitudes, hail forms near the interiors of continents, while, in the tropics, it tends to be confined to high elevations. There are methods available to detect hail-producing thunderstorms using weather satellites and weather radar imagery. Hailstones generally fall at higher speeds as they grow in size, though complicating factors such as melting, friction with air, wind, and interaction with rain and other hailstones can slow their descent through Earth's atmosphere. Severe weather warnings are issued for hail when the stones reach a damaging size, as it can cause serious damage to human-made structures, and, most commonly, farmers' crops. Any thunderstorm which produces hail that reaches the ground is known as a hailstorm. An ice crystal with a diameter of > is considered a hailstone. Hailstones can grow to and weigh more than . Unlike ice pellets, hailstones are layered and can be irregular and clumped together.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (10)
Information Theory Basics
Introduces information theory basics, including entropy, independence, and binary entropy function.
Probability Review: Random Variables and Independence
Covers probability concepts, random variables, independence, and entropy in information theory.
Convection-Diffusion: Boundary Layer Analysis
Discusses boundary layer analysis in convection-diffusion problems, focusing on numerical schemes and stability.
Show more
Related publications (49)

Flash Melting Amorphous Ice

Marcel Drabbels, Ulrich Lorenz, Constantin Richard Krüger, Nathan Junior Mowry, Gabriele Bongiovanni

Water can be vitrified if it is cooled at high rates, which makes it possible to outrun crystallization in so-called no man’s land, a range of deeply supercooled temperatures where water crystallizes rapidly. Here, we study the reverse process in pure wate ...
2024

Wind, Hail, and Climate Extremes: Modelling and Attribution Studies for Environmental Data

Ophélia Mireille Anna Miralles

This thesis presents work at the junction of statistics and climate science. We first provide methodology for use by climate scientists when performing fast event attribution using extreme value theory, and then describe two interdisciplinary projects in c ...
EPFL2023

Use of lidar aerosol extinction and backscatter coefficients to estimate cloud condensation nuclei (CCN) concentrations in the southeast Atlantic

Athanasios Nenes, Feng Xu

Accurately capturing cloud condensation nuclei (CCN) concentrations is key to understanding the aerosol-cloud interactions that continue to feature the highest uncertainty amongst numerous climate forcings. In situ CCN observations are sparse, and most non ...
COPERNICUS GESELLSCHAFT MBH2023
Show more
Related concepts (22)
Precipitation
In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls from clouds due to gravitational pull. The main forms of precipitation include drizzle, rain, sleet, snow, ice pellets, graupel and hail. Precipitation occurs when a portion of the atmosphere becomes saturated with water vapor (reaching 100% relative humidity), so that the water condenses and "precipitates" or falls. Thus, fog and mist are not precipitation but colloids, because the water vapor does not condense sufficiently to precipitate.
Thunderstorm
A thunderstorm, also known as an electrical storm or a lightning storm, is a storm characterized by the presence of lightning and its acoustic effect on the Earth's atmosphere, known as thunder. Relatively weak thunderstorms are sometimes called thundershowers. Thunderstorms occur in a type of cloud known as a cumulonimbus. They are usually accompanied by strong winds and often produce heavy rain and sometimes snow, sleet, or hail, but some thunderstorms produce little precipitation or no precipitation at all.
Tornado
A tornado is a violently rotating column of air that is in contact with both the surface of the Earth and a cumulonimbus cloud or, in rare cases, the base of a cumulus cloud. It is often referred to as a twister, whirlwind or cyclone, although the word cyclone is used in meteorology to name a weather system with a low-pressure area in the center around which, from an observer looking down toward the surface of the Earth, winds blow counterclockwise in the Northern Hemisphere and clockwise in the Southern.
Show more