Summary
A thunderstorm, also known as an electrical storm or a lightning storm, is a storm characterized by the presence of lightning and its acoustic effect on the Earth's atmosphere, known as thunder. Relatively weak thunderstorms are sometimes called thundershowers. Thunderstorms occur in a type of cloud known as a cumulonimbus. They are usually accompanied by strong winds and often produce heavy rain and sometimes snow, sleet, or hail, but some thunderstorms produce little precipitation or no precipitation at all. Thunderstorms may line up in a series or become a rainband, known as a squall line. Strong or severe thunderstorms include some of the most dangerous weather phenomena, including large hail, strong winds, and tornadoes. Some of the most persistent severe thunderstorms, known as supercells, rotate as do cyclones. While most thunderstorms move with the mean wind flow through the layer of the troposphere that they occupy, vertical wind shear sometimes causes a deviation in their course at a right angle to the wind shear direction. Thunderstorms result from the rapid upward movement of warm, moist air, sometimes along a front. However, some kind of cloud forcing, whether it is a front, shortwave trough, or another system is needed for the air to rapidly accelerate upward. As the warm, moist air moves upward, it cools, condenses, and forms a cumulonimbus cloud that can reach heights of over . As the rising air reaches its dew point temperature, water vapor condenses into water droplets or ice, reducing pressure locally within the thunderstorm cell. Any precipitation falls the long distance through the clouds towards the Earth's surface. As the droplets fall, they collide with other droplets and become larger. The falling droplets create a downdraft as it pulls cold air with it, and this cold air spreads out at the Earth's surface, occasionally causing strong winds that are commonly associated with thunderstorms. Thunderstorms can form and develop in any geographic location but most frequently within the mid-latitude, where warm, moist air from tropical latitudes collides with cooler air from polar latitudes.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (4)
Related concepts (115)
Dust devil
A dust devil (also known regionally as a dirt devil) is a strong, well-formed, and relatively short-lived whirlwind. Its size ranges from small (18in/half a metre wide and a few yards/metres tall) to large (more than 30ft/10 m wide and more than half a mile/1 km tall). The primary vertical motion is upward. Dust devils are usually harmless, but can on rare occasions grow large enough to pose a threat to both people and property. They are comparable to tornadoes in that both are a weather phenomenon involving a vertically oriented rotating column of wind.
Thunderstorm
A thunderstorm, also known as an electrical storm or a lightning storm, is a storm characterized by the presence of lightning and its acoustic effect on the Earth's atmosphere, known as thunder. Relatively weak thunderstorms are sometimes called thundershowers. Thunderstorms occur in a type of cloud known as a cumulonimbus. They are usually accompanied by strong winds and often produce heavy rain and sometimes snow, sleet, or hail, but some thunderstorms produce little precipitation or no precipitation at all.
Tropical cyclone
A tropical cyclone is a rapidly rotating storm system characterized by a low-pressure center, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain and squalls. Depending on its location and strength, a tropical cyclone is referred to by different names, including hurricane (ˈhʌrᵻkən,_-keɪn), typhoon (taɪ'fuːn), tropical storm, cyclonic storm, tropical depression, or simply cyclone.
Show more
Related courses (3)
ENV-410: Science of climate change
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
ME-466: Instability
This course focuses on the physical mechanisms at the origin of the transition of a flow from laminar to turbulent using the hydrodynamic instability theory.
ME-341: Heat and mass transfer
This course covers fundamentals of heat transfer and applications to practical problems. Emphasis will be on developing a physical and analytical understanding of conductive, convective, and radiative
Related lectures (24)
Mastering the Weather Challenge: Meteomatics
Explores Meteomatics' expertise in meteorology, weather API, energy forecasts, drones, climate studies, satellite monitoring, and snow depth analysis.
Different Scales of Atmospheric Phenomena
Covers the various scales of atmospheric phenomena, from planetary to micro-scale.
Centrifugal Instabilities: Mechanism and Analysis
Covers centrifugal instabilities, Rayleigh criterion, experimental setups, Navier-Stokes equations, base flow analysis, and comparison between theory and experiments.
Show more