Summary
In computing, aspect-oriented programming (AOP) is a programming paradigm that aims to increase modularity by allowing the separation of cross-cutting concerns. It does so by adding behavior to existing code (an advice) without modifying the code itself, instead separately specifying which code is modified via a "pointcut" specification, such as "log all function calls when the function's name begins with 'set. This allows behaviors that are not central to the business logic (such as logging) to be added to a program without cluttering the code core to the functionality. AOP includes programming methods and tools that support the modularization of concerns at the level of the source code, while aspect-oriented software development refers to a whole engineering discipline. Aspect-oriented programming entails breaking down program logic into distinct parts (so-called concerns, cohesive areas of functionality). Nearly all programming paradigms support some level of grouping and encapsulation of concerns into separate, independent entities by providing abstractions (e.g., functions, procedures, modules, classes, methods) that can be used for implementing, abstracting and composing these concerns. Some concerns "cut across" multiple abstractions in a program, and defy these forms of implementation. These concerns are called cross-cutting concerns or horizontal concerns. Logging exemplifies a crosscutting concern because a logging strategy necessarily affects every logged part of the system. Logging thereby crosscuts all logged classes and methods. All AOP implementations have some crosscutting expressions that encapsulate each concern in one place. The difference between implementations lies in the power, safety, and usability of the constructs provided. For example, interceptors that specify the methods to express a limited form of crosscutting, without much support for type-safety or debugging. AspectJ has a number of such expressions and encapsulates them in a special class, an aspect.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (16)
Separation of concerns
In computer science, separation of concerns is a design principle for separating a computer program into distinct sections. Each section addresses a separate concern, a set of information that affects the code of a computer program. A concern can be as general as "the details of the hardware for an application", or as specific as "the name of which class to instantiate". A program that embodies SoC well is called a modular program. Modularity, and hence separation of concerns, is achieved by encapsulating information inside a section of code that has a well-defined interface.
Comparison of programming languages
Programming languages are used for controlling the behavior of a machine (often a computer). Like natural languages, programming languages follow rules for syntax and semantics. There are thousands of programming languages and new ones are created every year. Few languages ever become sufficiently popular that they are used by more than a few people, but professional programmers may use dozens of languages in a career. Most programming languages are not standardized by an international (or national) standard, even widely used ones, such as Perl or Standard ML (despite the name).
Apache Groovy
Apache Groovy is a Java-syntax-compatible object-oriented programming language for the Java platform. It is both a static and dynamic language with features similar to those of Python, Ruby, and Smalltalk. It can be used as both a programming language and a scripting language for the Java Platform, is compiled to Java virtual machine (JVM) bytecode, and interoperates seamlessly with other Java code and libraries. Groovy uses a curly-bracket syntax similar to Java's. Groovy supports closures, multiline strings, and expressions embedded in strings.
Show more