Summary
In computing, aspect-oriented programming (AOP) is a programming paradigm that aims to increase modularity by allowing the separation of cross-cutting concerns. It does so by adding behavior to existing code (an advice) without modifying the code itself, instead separately specifying which code is modified via a "pointcut" specification, such as "log all function calls when the function's name begins with 'set. This allows behaviors that are not central to the business logic (such as logging) to be added to a program without cluttering the code core to the functionality. AOP includes programming methods and tools that support the modularization of concerns at the level of the source code, while aspect-oriented software development refers to a whole engineering discipline. Aspect-oriented programming entails breaking down program logic into distinct parts (so-called concerns, cohesive areas of functionality). Nearly all programming paradigms support some level of grouping and encapsulation of concerns into separate, independent entities by providing abstractions (e.g., functions, procedures, modules, classes, methods) that can be used for implementing, abstracting and composing these concerns. Some concerns "cut across" multiple abstractions in a program, and defy these forms of implementation. These concerns are called cross-cutting concerns or horizontal concerns. Logging exemplifies a crosscutting concern because a logging strategy necessarily affects every logged part of the system. Logging thereby crosscuts all logged classes and methods. All AOP implementations have some crosscutting expressions that encapsulate each concern in one place. The difference between implementations lies in the power, safety, and usability of the constructs provided. For example, interceptors that specify the methods to express a limited form of crosscutting, without much support for type-safety or debugging. AspectJ has a number of such expressions and encapsulates them in a special class, an aspect.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
CS-112(i): Object oriented programming
L'objectif de ce cours est de développer des compétences de base en programmation. L'accent sera mis sur l'approche orientée-objet laquelle renforce la réutilisabilité, la maintenabilité et la fiabili
BIO-210: Applied software engineering for life sciences
We learn and apply software engineering principles to program projects in Python. Projects cover problems in life sciences, and will be developed over the course of the semester.
CS-207: System oriented programming
Cours de programmation en langage C se focalisant sur l'utilisation des ressources système, en particulier la gestion de la mémoire (pointeurs).