In computational complexity theory, a promise problem is a generalization of a decision problem where the input is promised to belong to a particular subset of all possible inputs. Unlike decision problems, the yes instances (the inputs for which an algorithm must return yes) and no instances do not exhaust the set of all inputs. Intuitively, the algorithm has been promised that the input does indeed belong to set of yes instances or no instances. There may be inputs which are neither yes nor no. If such an input is given to an algorithm for solving a promise problem, the algorithm is allowed to output anything, and may even not halt.
A decision problem can be associated with a language , where the problem is to accept all inputs in and reject all inputs not in . For a promise problem, there are two languages, and , which must be disjoint, which means , such that all the inputs in are to be accepted and all inputs in are to be rejected. The set is called the promise. There are no requirements on the output if the input does not belong to the promise. If the promise equals , then this is also a decision problem, and the promise is said to be trivial.
Many natural problems are actually promise problems. For instance, consider the following problem: Given a directed acyclic graph, determine if the graph has a path of length 10. The yes instances are directed acyclic graphs with a path of length 10, whereas the no instances are directed acyclic graphs with no path of length 10. The promise is the set of directed acyclic graphs. In this example, the promise is easy to check. In particular, it is very easy to check if a given graph is cyclic. However, the promised property could be difficult to evaluate. For instance, consider the problem "Given a Hamiltonian graph, determine if the graph has a cycle of size 4." Now the promise is NP-hard to evaluate, yet the promise problem is easy to solve since checking for cycles of size 4 can be done in polynomial time.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In theoretical computer science, a computational problem is a problem that may be solved by an algorithm. For example, the problem of factoring "Given a positive integer n, find a nontrivial prime factor of n." is a computational problem. A computational problem can be viewed as a set of instances or cases together with a, possibly empty, set of solutions for every instance/case. For example, in the factoring problem, the instances are the integers n, and solutions are prime numbers p that are the nontrivial prime factors of n.
In computational complexity theory, a function problem is a computational problem where a single output (of a total function) is expected for every input, but the output is more complex than that of a decision problem. For function problems, the output is not simply 'yes' or 'no'. A functional problem is defined by a relation over strings of an arbitrary alphabet : An algorithm solves if for every input such that there exists a satisfying , the algorithm produces one such , and if there are no such , it rejects.
In computability theory and computational complexity theory, a decision problem is a computational problem that can be posed as a yes–no question of the input values. An example of a decision problem is deciding by means of an algorithm whether a given natural number is prime. Another is the problem "given two numbers x and y, does x evenly divide y?". The answer is either 'yes' or 'no' depending upon the values of x and y. A method for solving a decision problem, given in the form of an algorithm, is called a decision procedure for that problem.
, ,
We consider the problem of testing graph cluster structure: given access to a graph G = (V, E), can we quickly determine whether the graph can be partitioned into a few clusters with good inner conductance, or is far from any such graph? This is a generali ...
The D-Wave adiabatic quantum annealer solves hard combinatorial optimization problems leveraging quantum physics. The newest version features over 1000 qubits and was released in August 2015. We were given access to such a machine, currently hosted at NASA ...
In this thesis we give new algorithms for two fundamental graph problems. We develop novel ways of using linear programming formulations, even exponential-sized ones, to extract structure from problem instances and to guide algorithms in making progress. S ...