Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The D-Wave adiabatic quantum annealer solves hard combinatorial optimization problems leveraging quantum physics. The newest version features over 1000 qubits and was released in August 2015. We were given access to such a machine, currently hosted at NASA Ames Research Center in California, to explore the potential for hard optimization problems that arise in the context of databases. In this paper, we tackle the problem of multiple query optimization (MQO). We show how an MQO problem instance can be transformed into a mathematical formula that complies with the restrictive input format accepted by the quantum annealer. This formula is translated into weights on and between qubits such that the configuration minimizing the input formula can be found via a process called adiabatic quantum annealing. We analyze the asymptotic growth rate of the number of required qubits in the MQO problem dimensions as the number of qubits is currently the main factor restricting applicability. We experimentally compare the performance of the quantum annealer against other MQO algorithms executed on a traditional computer. While the problem sizes that can be treated are currently limited, we already find a class of problem instances where the quantum annealer is three orders of magnitude faster than other approaches.
Gian Florin Gentinetta, Stefan Woerner