In computational complexity theory, a function problem is a computational problem where a single output (of a total function) is expected for every input, but the output is more complex than that of a decision problem. For function problems, the output is not simply 'yes' or 'no'.
A functional problem is defined by a relation over strings of an arbitrary alphabet :
An algorithm solves if for every input such that there exists a satisfying , the algorithm produces one such , and if there are no such , it rejects.
A promise function problem is allowed to do anything (thus may not terminate) if no such exists.
A well-known function problem is given by the Functional Boolean Satisfiability Problem, FSAT for short. The problem, which is closely related to the SAT decision problem, can be formulated as follows:
Given a boolean formula with variables , find an assignment such that evaluates to or decide that no such assignment exists.
In this case the relation is given by tuples of suitably encoded boolean formulas and satisfying assignments.
While a SAT algorithm, fed with a formula , only needs to return "unsatisfiable" or "satisfiable", an FSAT algorithm needs to return some satisfying assignment in the latter case.
Other notable examples include the travelling salesman problem, which asks for the route taken by the salesman, and the integer factorization problem, which asks for the list of factors.
Consider an arbitrary decision problem in the class NP. By the definition of NP, each problem instance that is answered 'yes' has a polynomial-size certificate which serves as a proof for the 'yes' answer. Thus, the set of these tuples forms a relation, representing the function problem "given in , find a certificate for ". This function problem is called the function variant of ; it belongs to the class FNP.
FNP can be thought of as the function class analogue of NP, in that solutions of FNP problems can be efficiently (i.e., in polynomial time in terms of the length of the input) verified, but not necessarily efficiently found.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
As a professional you will face unfamiliar challenges that will require you to think strategically. This course develops your strategic thinking by giving you a step-by-step process and actionable too
The study of random walks finds many applications in computer science and communications. The goal of the course is to get familiar with the theory of random walks, and to get an overview of some appl
A decentralized system is one that works when no single party is in charge or fully trusted. This course teaches decentralized systems principles while guiding students through the engineering of thei
Un problème algorithmique est, en informatique théorique, un objet mathématique qui représente une question ou un ensemble de questions auxquelles un ordinateur devrait être en mesure de répondre. Le plus souvent, ces problèmes sont de la forme : étant donné un objet (l'instance), effectuer une certaine action ou répondre à telle question. Par exemple, le problème de la factorisation est le problème suivant : étant donné un nombre entier, trouver un facteur premier de cet entier.
En informatique théorique, et notamment dans la théorie de la complexité, la classe L est la classe des problèmes de décision décidés par une machine de Turing déterministe qui utilise un espace de taille logarithmique en fonction de la taille de l'entrée. Pour être plus précis, l'exigence sur l'espace de taille logarithmique se réfère à l'espace supplémentaire utilisable. Elle est aussi parfois notée LOGSPACE.
En théorie de la complexité et en théorie de la calculabilité, un problème de comptage est un type particulier de problème algorithmique. Étant donné un problème algorithmique consistant à trouver une solution, on peut définir le problème de comptage associé, qui consiste à calculer le nombre de solutions. Des classes de complexité spécifiques existent pour les problèmes de comptage, dont la plus connue #P qui est l'analogue de la classe NP pour les problèmes de décision.
Explore le problème caché du sous-groupe et l'algorithme Simon dans le calcul quantique.
Explore les contrats intelligents dans Bitcoin, le modèle UTXO, l'autorisation, les contrôles de validité, les défis, les applications et les tendances émergentes.
Couvre le concept de modèles graphiques et de distributions de probabilités conjointes.
The need to maintain and expand hydraulic structures is a major challenge for the coming energy transition, especially in Western countries. One technique already widespread allowing to meet these issues consists in the use of geomembranes to overcome prob ...
2023
We investigate generalizations along the lines of the Mordell-Lang conjecture of the author's p-adic formal Manin-Mumford results for n-dimensional p-divisible formal groups F. In particular, given a finitely generated subgroup (sic) of F(Q(p)) and a close ...
SPRINGER INT PUBL AG2023
This paper examines the minimization of the cost for an expected random production output, given an assembly of finished goods from two random inputs, matched in two categories. We describe the optimal input portfolio, first using the standard normal appro ...