In coding theory, the Kraft–McMillan inequality gives a necessary and sufficient condition for the existence of a prefix code (in Leon G. Kraft's version) or a uniquely decodable code (in Brockway McMillan's version) for a given set of codeword lengths. Its applications to prefix codes and trees often find use in computer science and information theory. Kraft's inequality was published in . However, Kraft's paper discusses only prefix codes, and attributes the analysis leading to the inequality to Raymond Redheffer. The result was independently discovered in . McMillan proves the result for the general case of uniquely decodable codes, and attributes the version for prefix codes to a spoken observation in 1955 by Joseph Leo Doob. Kraft's inequality limits the lengths of codewords in a prefix code: if one takes an exponential of the length of each valid codeword, the resulting set of values must look like a probability mass function, that is, it must have total measure less than or equal to one. Kraft's inequality can be thought of in terms of a constrained budget to be spent on codewords, with shorter codewords being more expensive. Among the useful properties following from the inequality are the following statements: If Kraft's inequality holds with strict inequality, the code has some redundancy. If Kraft's inequality holds with equality, the code in question is a complete code. If Kraft's inequality does not hold, the code is not uniquely decodable. For every uniquely decodable code, there exists a prefix code with the same length distribution. Let each source symbol from the alphabet be encoded into a uniquely decodable code over an alphabet of size with codeword lengths Then Conversely, for a given set of natural numbers satisfying the above inequality, there exists a uniquely decodable code over an alphabet of size with those codeword lengths. Any binary tree can be viewed as defining a prefix code for the leaves of the tree. Kraft's inequality states that Here the sum is taken over the leaves of the tree, i.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (1)

ON THE INEQUALITIES IN INFORMATION THEORY

Rethnakaran Pulikkoonattu

Claude Elwood Shannon in 1948, then of the Bell Labs, published one of the ground breaking papers in the history of engineering [1]. This paper (”A Mathematical Theory of Communication”, Bell System Tech. Journal, Vol. 27, July and October 1948, pp. 379 - ...
2007

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.