Summary
In coding theory, the Kraft–McMillan inequality gives a necessary and sufficient condition for the existence of a prefix code (in Leon G. Kraft's version) or a uniquely decodable code (in Brockway McMillan's version) for a given set of codeword lengths. Its applications to prefix codes and trees often find use in computer science and information theory. Kraft's inequality was published in . However, Kraft's paper discusses only prefix codes, and attributes the analysis leading to the inequality to Raymond Redheffer. The result was independently discovered in . McMillan proves the result for the general case of uniquely decodable codes, and attributes the version for prefix codes to a spoken observation in 1955 by Joseph Leo Doob. Kraft's inequality limits the lengths of codewords in a prefix code: if one takes an exponential of the length of each valid codeword, the resulting set of values must look like a probability mass function, that is, it must have total measure less than or equal to one. Kraft's inequality can be thought of in terms of a constrained budget to be spent on codewords, with shorter codewords being more expensive. Among the useful properties following from the inequality are the following statements: If Kraft's inequality holds with strict inequality, the code has some redundancy. If Kraft's inequality holds with equality, the code in question is a complete code. If Kraft's inequality does not hold, the code is not uniquely decodable. For every uniquely decodable code, there exists a prefix code with the same length distribution. Let each source symbol from the alphabet be encoded into a uniquely decodable code over an alphabet of size with codeword lengths Then Conversely, for a given set of natural numbers satisfying the above inequality, there exists a uniquely decodable code over an alphabet of size with those codeword lengths. Any binary tree can be viewed as defining a prefix code for the leaves of the tree. Kraft's inequality states that Here the sum is taken over the leaves of the tree, i.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (1)