Calcium oxide (formula: CaO), commonly known as quicklime or burnt lime, is a widely used chemical compound. It is a white, caustic, alkaline, crystalline solid at room temperature. The broadly used term lime connotes calcium-containing inorganic compounds, in which carbonates, oxides, and hydroxides of calcium, silicon, magnesium, aluminium, and iron predominate. By contrast, quicklime specifically applies to the single compound calcium oxide. Calcium oxide that survives processing without reacting in building products, such as cement, is called free lime. Quicklime is relatively inexpensive. Both it and the chemical derivative calcium hydroxide (of which quicklime is the base anhydride) are important commodity chemicals. Calcium oxide is usually made by the thermal decomposition of materials, such as limestone or seashells, that contain calcium carbonate (CaCO3; mineral calcite) in a lime kiln. This is accomplished by heating the material to above , a process called calcination or lime-burning, to liberate a molecule of carbon dioxide (CO2), leaving quicklime behind. This is also one of the few chemical reactions known in prehistoric times. CaCO3(s) → CaO(s) + CO2(g) The quicklime is not stable and, when cooled, will spontaneously react with CO2 from the air until, after enough time, it will be completely converted back to calcium carbonate unless slaked with water to set as lime plaster or lime mortar. Annual worldwide production of quicklime is around 283 million tonnes. China is by far the world's largest producer, with a total of around 170 million tonnes per year. The United States is the next largest, with around 20 million tonnes per year. Approximately 1.8 t of limestone is required per 1.0 t of quicklime. Quicklime has a high affinity for water and is a more efficient desiccant than silica gel. The reaction of quicklime with water is associated with an increase in volume by a factor of at least 2.5. The major use of quicklime is in the basic oxygen steelmaking (BOS) process. Its usage varies from about per ton of steel.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
MSE-660: Limestone-Calcined Clay - Cement : Characterisation methods
Le but est de former doctorants et post doctorants aux méthodes de charactérisation des ciments composés comme la microstructure, la diffraction des rayons X, la calorimétrie, la formulation et la dur
MSE-322: Building materials + Laboratory work
Science des matériaux de construction non métalliques les plus utilisés et plus particulièrement des matériaux cimentaires (béton). Composition chimique, fabrication et comportement sur la durée.
MSE-101(a): Materials:from chemistry to properties
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
Show more
Related lectures (31)
Hydration of Calcium Silicates
Explores the hydration process of calcium silicates and the formation of C-S-H.
Water Quality Modelling
Explores water quality modelling, focusing on carbonate chemistry reactions and the use of PHREEQC software for water softening simulations.
Lime in Construction
Explores the types, manufacturing, dangers, hardening, dosage, and applications of lime in construction.
Show more
Related publications (49)

Nanoindentation hardness and modulus of Al2O3-SiO2-CaO and MnO-SiO2-FeO inclusions in iron

Andreas Mortensen, David Hernandez Escobar, Léa Deillon, Alejandra Inés Slagter, Eva Luisa Vogt, Jonathan Aristya Setyadji

Dataset corresponding to the following manuscript:  Slagter, A., Setyadji, J.A., Vogt, E.L. et al. Nanoindentation Hardness and Modulus of Al2O3–SiO2–CaO and MnO–SiO2–FeO Inclusions in Iron. Metall Mater Trans A (2024). https://doi.org/10.1007/s11661-024-0 ...
Zenodo2024

Micromechanics of oxide inclusions in ferrous alloys

Alejandra Inés Slagter

Oxide inclusions are inevitably present in steel as a direct consequence of the steelmaking process; as a result, a cubic centimetre of modern steel will generally contain about a million of these hard and brittle micrometre-sized ceramic particles. Inclus ...
EPFL2023

In situ construction of graphdiyne based heterojunctions by a deprotection-free approach for photocatalytic hydrogen generation

Cong Wang, Jian Li

Graphdiyne (GDY) with a direct bandgap, high charge carrier mobility, and ordered pore structure, is considered an excellent matrix for the construction of heterojunction photocatalysts. However, the traditional fabrication methods for GDY-based heterojunc ...
ROYAL SOC CHEMISTRY2023
Show more
Related concepts (24)
Lime (material)
Lime is an inorganic material composed primarily of calcium oxides and hydroxides, usually calcium oxide and/or calcium hydroxide. It is also the name for calcium oxide which occurs as a product of coal-seam fires and in altered limestone xenoliths in volcanic ejecta. The International Mineralogical Association recognizes lime as a mineral with the chemical formula of CaO. The word lime originates with its earliest use as building mortar and has the sense of sticking or adhering.
Portland cement
Portland cement is the most common type of cement in general use around the world as a basic ingredient of concrete, mortar, stucco, and non-specialty grout. It was developed from other types of hydraulic lime in England in the early 19th century by Joseph Aspdin, and is usually made from limestone. It is a fine powder, produced by heating limestone and clay minerals in a kiln to form clinker, grinding the clinker, and adding 2 to 3 percent of gypsum. Several types of portland cement are available.
Cement
A cement is a binder, a chemical substance used for construction that sets, hardens, and adheres to other materials to bind them together. Cement is seldom used on its own, but rather to bind sand and gravel (aggregate) together. Cement mixed with fine aggregate produces mortar for masonry, or with sand and gravel, produces concrete. Concrete is the most widely used material in existence and is behind only water as the planet's most-consumed resource.
Show more
Related MOOCs (2)
Cement Chemistry and Sustainable Cementitious Materials
Learn the basics of cement chemistry and laboratory best practices for assessment of its key properties.
Sorption and transport in cementitious materials
Learn how to study and improve the durability of cementitious materials.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.