In computer science, a parallel algorithm, as opposed to a traditional serial algorithm, is an algorithm which can do multiple operations in a given time. It has been a tradition of computer science to describe serial algorithms in abstract machine models, often the one known as random-access machine. Similarly, many computer science researchers have used a so-called parallel random-access machine (PRAM) as a parallel abstract machine (shared-memory).
Many parallel algorithms are executed concurrently – though in general concurrent algorithms are a distinct concept – and thus these concepts are often conflated, with which aspect of an algorithm is parallel and which is concurrent not being clearly distinguished. Further, non-parallel, non-concurrent algorithms are often referred to as "sequential algorithms", by contrast with concurrent algorithms.
Analysis of parallel algorithms
Algorithms vary significantly in how parallelizable they are, ranging from easily parallelizable to completely unparallelizable. Further, a given problem may accommodate different algorithms, which may be more or less parallelizable.
Some problems are easy to divide up into pieces in this way – these are called embarrassingly parallel problems. Examples include many algorithms to solve Rubik's Cubes and find values which result in a given hash.
Some problems cannot be split up into parallel portions, as they require the results from a preceding step to effectively carry on with the next step – these are called s. Examples include iterative numerical methods, such as Newton's method, iterative solutions to the three-body problem, and most of the available algorithms to compute pi (π). Some sequential algorithms can be converted into parallel algorithms using automatic parallelization.
Parallel algorithms on individual devices have become more common since the early 2000s because of substantial improvements in multiprocessing systems and the rise of multi-core processors.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In parallel computing, an embarrassingly parallel workload or problem (also called embarrassingly parallelizable, perfectly parallel, delightfully parallel or pleasingly parallel) is one where little or no effort is needed to separate the problem into a number of parallel tasks. This is often the case where there is little or no dependency or need for communication between those parallel tasks, or for results between them. Thus, these are different from distributed computing problems that need communication between tasks, especially communication of intermediate results.
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor.
Theoretical computer science (TCS) is a subset of general computer science and mathematics that focuses on mathematical aspects of computer science such as the theory of computation, lambda calculus, and type theory. It is difficult to circumscribe the theoretical areas precisely. The ACM's Special Interest Group on Algorithms and Computation Theory (SIGACT) provides the following description: History of computer science While logical inference and mathematical proof had existed previously, in 1931 Kurt Gödel proved with his incompleteness theorem that there are fundamental limitations on what statements could be proved or disproved.
This course teaches an overview of modern optimization methods, for applications in machine learning and data science. In particular, scalability of algorithms to large datasets will be discussed in t
With the advent of modern architectures, it becomes crucial to master the underlying algorithmics of concurrency. The objective of this course is to study the foundations of concurrent algorithms and
Learn the concepts, tools and API's that are needed to debug, test, optimize and parallelize a scientific application on a cluster from an existing code or from scratch. Both OpenMP (shared memory) an
Explores synchronization principles using locks and barriers, emphasizing efficient hardware-supported implementations and coordination mechanisms like OpenMP.
We explore applications of quantum computing for radio interferometry and astronomy using recent developments in quantum image processing. We evaluate the suitability of different quantum image representations using a toy quantum computing image reconstruc ...
Elsevier2024
, , ,
We introduce and derive the Fourier -enhanced 3D electrostatic field solver of the gyrokinetic full -f PIC code PICLS. The solver makes use of a Fourier representation in one periodic direction of the domain to make the solving of the system easily paralle ...
Verification and testing of hardware heavily relies on cycle-accurate simulation of RTL.As single-processor performance is growing only slowly, conventional, single-threaded RTL simulation is becoming impractical for increasingly complex chip designs and s ...