vignette|Une représentation artistique d'une machine de Turing. Les machines de Turing sont un modèle de calcul.
L'informatique théorique est l'étude des fondements logiques et mathématiques de l'informatique. C'est une branche de la science informatique et la science formelle. Plus généralement, le terme est utilisé pour désigner des domaines ou sous-domaines de recherche centrés sur des vérités universelles (axiomes) en rapport avec l'informatique. L'informatique théorique se caractérise par une approche par nature plus mathématique et moins empirique de l'informatique et ses objectifs ne sont pas toujours directement reliés à des enjeux technologiques.
De nombreuses disciplines peuvent être regroupées sous cette dénomination diffuse dont :
la théorie de la calculabilité,
l'algorithmique et la théorie de la complexité,
la théorie de l'information,
l'étude de la sémantique des langages de programmation,
la logique mathématique,
la théorie des automates et des langages formels.
Dans cette section, nous donnons une histoire de l'informatique théorique en nous appuyant sur différentes sources :
l'hommage à Maurice Nivat dans le bulletin de la SIF,
l'histoire du CRIN,
le livre Models of Computation de John E. Savage.
vignette|Alan Turing à l'âge de 16 ans.
Les logiciens Bertrand Russel, David Hilbert et George Boole furent des précurseurs de l'informatique théorique. Mais cette branche de l'informatique a surtout vu le jour à partir des travaux d'Alan Turing et Alonzo Church en 1936, qui ont introduit les modèles formels de calculs (les machines de Turing et le lambda calcul). Ils ont montré l'existence de machines universelles capables de simuler toutes les machines du même type, par exemple les machines de Turing universelles. En 1938, Claude Shannon montre que l'algèbre booléenne explique le comportement des circuits avec des relais électromécaniques. En 1945, John von Neumann introduit la notion d'architecture de von Neumann à la base des ordinateurs. En 1948, Claude Shannon publie A Mathematical Theory of Communication, fondateur de la théorie de l'information.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
En informatique théorique, et plus précisément en théorie de la complexité, une classe de complexité est un ensemble de problèmes algorithmiques dont la résolution nécessite la même quantité d'une certaine ressource. Une classe est souvent définie comme l'ensemble de tous les problèmes qui peuvent être résolus sur un modèle de calcul M, utilisant une quantité de ressources du type R, où n, est la taille de l'entrée. Les classes les plus usuelles sont celles définies sur des machines de Turing, avec des contraintes de temps de calcul ou d'espace.
La complexité de la communication ou complexité de communication est une notion étudiée en informatique théorique. Le dispositif abstrait classique est le suivant : Alice et Bob ont chacun un message, et ils veulent calculer un nouveau message à partir de leurs messages, en se transmettant un minimum d'information. Par exemple, Alice et Bob reçoivent un mot chacun, et ils doivent décider s'ils ont reçu le même mot ; ils peuvent bien sûr s'envoyer leur mot l'un à l'autre et comparer, mais la question est de minimiser le nombre de messages.
En informatique théorique, la sémantique formelle (des langages de programmation) est l’étude de la signification des programmes informatiques vus en tant qu’objets mathématiques. Comme en linguistique, la sémantique, appliquée aux langages de programmation, désigne le lien entre un signifiant, le programme, et un signifié, objet mathématique. L'objet mathématique dépend des propriétés à connaître du programme. La sémantique est également le lien entre : le langage signifiant : le langage de programmation le langage signifié : logique de Hoare, automates.
The course aims to introduce the basic concepts and results of modern Graph Theory with special emphasis on those topics and techniques that have proved to be applicable in theoretical computer scienc
This course covers the statistical physics approach to computer science problems ranging from graph theory and constraint satisfaction to inference and machine learning. In particular the replica and
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Adaptive signal processing, A/D and D/A. This module provides the basic
tools for adaptive filtering and a solid mathematical framework for sampling and
quantization
Modern integrated circuits are tiny yet incredibly complex technological artifacts, composed of millions and billions of individual structures working in unison.Managing their complexity and facilitating their design drove part of the co-evolution of moder ...
EPFL2024
,
Machine learning techniques have been extensively developed in the field of electricity theft detection. However, almost all typical models primarily rely on electricity consumption data to identify fraudulent users, often neglecting other pertinent househ ...
Understanding visual complexity of urban environments may improve urban design strategies and limit visual pollution due to advertising, road signage, telecommunication systems and machinery. This paper aims at quantifying visual complexity specifically in ...