The ionosphere (aɪˈɒnəˌsfɪər) is the ionized part of the upper atmosphere of Earth, from about to above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays an important role in atmospheric electricity and forms the inner edge of the magnetosphere. It has practical importance because, among other functions, it influences radio propagation to distant places on Earth. It also affects GPS signals that travel through this layer.
As early as 1839, the German mathematician and physicist Carl Friedrich Gauss postulated that an electrically conducting region of the atmosphere could account for observed variations of Earth's magnetic field. Sixty years later, Guglielmo Marconi received the first trans-Atlantic radio signal on December 12, 1901, in St. John's, Newfoundland (now in Canada) using a kite-supported antenna for reception. The transmitting station in Poldhu, Cornwall, used a spark-gap transmitter to produce a signal with a frequency of approximately 500 kHz and a power of 100 times more than any radio signal previously produced. The message received was three dits, the Morse code for the letter S. To reach Newfoundland the signal would have to bounce off the ionosphere twice. Dr. Jack Belrose has contested this, however, based on theoretical and experimental work. However, Marconi did achieve transatlantic wireless communications in Glace Bay, Nova Scotia, one year later.
In 1902, Oliver Heaviside proposed the existence of the Kennelly–Heaviside layer of the ionosphere which bears his name. Heaviside's proposal included means by which radio signals are transmitted around the Earth's curvature. Also in 1902, Arthur Edwin Kennelly discovered some of the ionosphere's radio-electrical properties.
In 1912, the U.S. Congress imposed the Radio Act of 1912 on amateur radio operators, limiting their operations to frequencies above 1.5 MHz (wavelength 200 meters or smaller). The government thought those frequencies were useless.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The student will learn state-of-the-art algorithms for solving differential equations. The analysis and implementation of these algorithms will be discussed in some detail.
Bases des références géodésiques, principe de mesure utilisé en localisation par satellites et de l'estimation de la qualité de positions GNSS (Global Navigation Satellites Systems).
An aurora (: aurorae or auroras), also commonly known as the northern lights (aurora borealis) or southern lights (aurora australis), is a natural light display in Earth's sky, predominantly seen in high-latitude regions (around the Arctic and Antarctic). Auroras display dynamic patterns of brilliant lights that appear as curtains, rays, spirals, or dynamic flickers covering the entire sky. Auroras are the result of disturbances in the magnetosphere caused by the solar wind.
The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5keV. The composition of the solar wind plasma also includes a mixture of materials found in the solar plasma: trace amounts of heavy ions and atomic nuclei of elements such as C, N, O, Ne, Mg, Si, S, and Fe. There are also rarer traces of some other nuclei and isotopes such as P, Ti, Cr, 54Fe and 56Fe, and 58Ni, 60Ni, and 62Ni.
Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from the Sun. The magnetic field is generated by electric currents due to the motion of convection currents of a mixture of molten iron and nickel in Earth's outer core: these convection currents are caused by heat escaping from the core, a natural process called a geodynamo.
We describe a novel method to compute the components of dynamo tensors from direct magnetohydrodynamic (MHD) simulations. Our method relies upon an extension and generalization of the standard H & ouml;gbom CLEAN algorithm widely used in radio astronomy to ...
Oxford Univ Press2024
,
Lightning discharges, including cloud-to-ground (CG) and intracloud (IC) lightning, are known to emit electromagnetic pulses (EMPs) in a wide frequency band ranging from few Hz up to hundreds MHz [1]. During the breakdown and ionization processes (mostly f ...
The ionosphere can be perturbed by solar and geomagnetic activity, earthquakes, thunderstorms, etc. In particular, electromagnetic pulses produced by thunderstorms can generate wave structures in the ionospheric plasma, which are known as atmospheric gravi ...