T-symmetry or time reversal symmetry is the theoretical symmetry of physical laws under the transformation of time reversal,
Since the second law of thermodynamics states that entropy increases as time flows toward the future, in general, the macroscopic universe does not show symmetry under time reversal. In other words, time is said to be non-symmetric, or asymmetric, except for special equilibrium states when the second law of thermodynamics predicts the time symmetry to hold. However, quantum noninvasive measurements are predicted to violate time symmetry even in equilibrium, contrary to their classical counterparts, although this has not yet been experimentally confirmed.
Time asymmetries (see Arrow of time) generally are caused by one of three categories:
intrinsic to the dynamic physical law (e.g., for the weak force)
due to the initial conditions of the universe (e.g., for the second law of thermodynamics)
due to measurements (e.g., for the noninvasive measurements)
Daily experience shows that T-symmetry does not hold for the behavior of bulk materials. Of these macroscopic laws, most notable is the second law of thermodynamics. Many other phenomena, such as the relative motion of bodies with friction, or viscous motion of fluids, reduce to this, because the underlying mechanism is the dissipation of usable energy (for example, kinetic energy) into heat.
The question of whether this time-asymmetric dissipation is really inevitable has been considered by many physicists, often in the context of Maxwell's demon. The name comes from a thought experiment described by James Clerk Maxwell in which a microscopic demon guards a gate between two halves of a room. It only lets slow molecules into one half, only fast ones into the other. By eventually making one side of the room cooler than before and the other hotter, it seems to reduce the entropy of the room, and reverse the arrow of time. Many analyses have been made of this; all show that when the entropy of room and demon are taken together, this total entropy does increase.